TY - JOUR
T1 - Chromatin regulated interchange between polycomb repressive complex 2 (PRC2)-Ezh2 and PRC2-Ezh1 complexes controls myogenin activation in skeletal muscle cells
AU - Stojic, Lovorka
AU - Jasencakova, Zuzana
AU - Prezioso, Carolina
AU - Stützer, Alexandra
AU - Bodega, Beatrice
AU - Pasini, Diego
AU - Klingberg, Rebecca
AU - Mozzetta, Chiara
AU - Margueron, Raphael
AU - Puri, Pier
AU - Schwarzer, Dirk
AU - Helin, Kristian
AU - Fischle, Wolfgang
AU - Orlando, Valerio
N1 - Funding Information:
We thank all the members of the Orlando laboratory for their constructive comments and suggestions. We are also grateful to Massimiliano di Pietro for his careful reading of the manuscript and to Holly Bream for manuscript editing. The work was supported by Deutsche Forschungsgemeineschft (DFG) within the Emmy-Noether program (SCHW 1163/3-1) to DS; the Danish National Research Foundation to KH; the Max Planck Society to WF; Telethon (S00094), AIRC (Associazione Italiana Ricerca sul Cancro), The Epigenome NoE FP6 to VO; LS was supported by an EMBO long-term fellowship; ZJ was supported by an EMBO long-term and a Human Frontier Science Program (HFSP) fellowship; DP was a recipient of a postdoctoral fellowship from the Danish Medical Research Council.
PY - 2011
Y1 - 2011
N2 - Background: Polycomb group (PcG) genes code for chromatin multiprotein complexes that are responsible for maintaining gene silencing of transcriptional programs during differentiation and in adult tissues. Despite the large amount of information on PcG function during development and cell identity homeostasis, little is known regarding the dynamics of PcG complexes and their role during terminal differentiation. Results: We show that two distinct polycomb repressive complex (PRC)2 complexes contribute to skeletal muscle cell differentiation: the PRC2-Ezh2 complex, which is bound to the myogenin (MyoG) promoter and muscle creatine kinase (mCK) enhancer in proliferating myoblasts, and the PRC2-Ezh1 complex, which replaces PRC2-Ezh2 on MyoG promoter in post-mitotic myotubes. Interestingly, the opposing dynamics of PRC2-Ezh2 and PRC2-Ezh1 at these muscle regulatory regions is differentially regulated at the chromatin level by Msk1 dependent methyl/phospho switch mechanism involving phosphorylation of serine 28 of the H3 histone (H3S28ph). While Msk1/H3S28ph is critical for the displacement of the PRC2-Ezh2 complex, this pathway does not influence the binding of PRC2-Ezh1 on the chromatin. Importantly, depletion of Ezh1 impairs muscle differentiation and the chromatin recruitment of MyoD to the MyoG promoter in differentiating myotubes. We propose that PRC2-Ezh1 is necessary for controlling the proper timing of MyoG transcriptional activation and thus, in contrast to PRC2-Ezh2, is required for myogenic differentiation. Conclusions: Our data reveal another important layer of epigenetic control orchestrating skeletal muscle cell terminal differentiation, and introduce a novel function of the PRC2-Ezh1 complex in promoter setting.
AB - Background: Polycomb group (PcG) genes code for chromatin multiprotein complexes that are responsible for maintaining gene silencing of transcriptional programs during differentiation and in adult tissues. Despite the large amount of information on PcG function during development and cell identity homeostasis, little is known regarding the dynamics of PcG complexes and their role during terminal differentiation. Results: We show that two distinct polycomb repressive complex (PRC)2 complexes contribute to skeletal muscle cell differentiation: the PRC2-Ezh2 complex, which is bound to the myogenin (MyoG) promoter and muscle creatine kinase (mCK) enhancer in proliferating myoblasts, and the PRC2-Ezh1 complex, which replaces PRC2-Ezh2 on MyoG promoter in post-mitotic myotubes. Interestingly, the opposing dynamics of PRC2-Ezh2 and PRC2-Ezh1 at these muscle regulatory regions is differentially regulated at the chromatin level by Msk1 dependent methyl/phospho switch mechanism involving phosphorylation of serine 28 of the H3 histone (H3S28ph). While Msk1/H3S28ph is critical for the displacement of the PRC2-Ezh2 complex, this pathway does not influence the binding of PRC2-Ezh1 on the chromatin. Importantly, depletion of Ezh1 impairs muscle differentiation and the chromatin recruitment of MyoD to the MyoG promoter in differentiating myotubes. We propose that PRC2-Ezh1 is necessary for controlling the proper timing of MyoG transcriptional activation and thus, in contrast to PRC2-Ezh2, is required for myogenic differentiation. Conclusions: Our data reveal another important layer of epigenetic control orchestrating skeletal muscle cell terminal differentiation, and introduce a novel function of the PRC2-Ezh1 complex in promoter setting.
UR - http://www.scopus.com/inward/record.url?scp=80052571043&partnerID=8YFLogxK
U2 - 10.1186/1756-8935-4-16
DO - 10.1186/1756-8935-4-16
M3 - Article
C2 - 21892963
AN - SCOPUS:80052571043
SN - 1756-8935
VL - 4
JO - Epigenetics and Chromatin
JF - Epigenetics and Chromatin
IS - 1
M1 - 16
ER -