Chromosome-scale pearl millet genomes reveal CLAMT1b as key determinant of strigolactone pattern and Striga susceptibility

Hendrik N.J. Kuijer, Jian You Wang, Salim Bougouffa, Michael Abrouk, Muhammad Jamil, Roberto Incitti, Intikhab Alam, Aparna Balakrishna, Derry Alvarez, Cristina Votta, Guan Ting Erica Chen, Claudio Martínez, Andrea Zuccolo, Lamis Berqdar, Salim Sioud, Valentina Fiorilli, Angel R. de Lera, Luisa Lanfranco, Takashi Gojobori, Rod A. WingSimon G. Krattinger, Xin Gao, Salim Al-Babili*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

The yield of pearl millet, a resilient cereal crop crucial for African food security, is severely impacted by the root parasitic weed Striga hermonthica, which requires host-released hormones, called strigolactones (SLs), for seed germination. Herein, we identify four SLs present in the Striga-susceptible line SOSAT-C88-P10 (P10) but absent in the resistant 29Aw (Aw). We generate chromosome-scale genome assemblies, including four gapless chromosomes for each line. The Striga-resistant Aw lacks a 0.7 Mb genome segment containing two putative CARLACTONOIC ACID METHYLTRANSFERASE1 (CLAMT1) genes, which may contribute to SL biosynthesis. Functional assays show that P10CLAMT1b produces the SL-biosynthesis intermediate methyl carlactonoate (MeCLA) and that MeCLA is the precursor of P10-specific SLs. Screening a diverse pearl millet panel confirms the pivotal role of the CLAMT1 section for SL diversity and Striga susceptibility. Our results reveal a reason for Striga susceptibility in pearl millet and pave the way for generating resistant lines through marker-assisted breeding or direct genetic modification.

Original languageEnglish (US)
Article number6906
JournalNature Communications
Volume15
Issue number1
DOIs
StatePublished - Dec 2024

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Chromosome-scale pearl millet genomes reveal CLAMT1b as key determinant of strigolactone pattern and Striga susceptibility'. Together they form a unique fingerprint.

Cite this