TY - JOUR
T1 - Citronellal cyclisation to isopulegol over micro-mesoporous zsm-5 zeolite: effects of desilication temperature on textural and catalytic properties
AU - Shah, Abdul Karim
AU - Maitlo, Ghulamullah
AU - Korai, Rashid Mustafa
AU - Unar, Imran Nazir
AU - Shah, Aqeel Ahmed
AU - Khan, Hassnain Abbas
AU - Shah, Syed Farman Ali
AU - Ismail, Usama
AU - Park, Yeung Ho
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The authors are deeply thankful to Higher Education Commission Pakistan (HEC), Chemical Engineering department of Dawood University of Engineering and Technology and Fine Chemicals Laboratory Hanyang University South Korea for providing facility to conduct this research. Moreover, we are also grateful to the Hanyang University for providing a laboratory facility and funding support for experimental work.
PY - 2019/6/26
Y1 - 2019/6/26
N2 - In this work, desilication reassembly post treatment process was applied in synthesis of mesoporous zeolite with stable phase composition and applied it in citronellal cyclisation reaction for the production of isopulegol. The desilication and temperature effects were further investigated on physical and chemical characteristics of zeolite and compared them with catalytic activity. The desilicated zeolite samples have been characterized with the help of N2-adsorption, XRD, ICP-OES, pyridine adsorption and FTIR techniques. Its performance was explored by controlling operative parameters. Experimental outcomes exhibited that desilication of zeolite would led to formation of mesopores inside the stable zeolite framework structures without substantial damage of their internal composition. These changes facilitate mass transfer and catalytic activity with an increase in surface area, mesoporosity, pore size, pore volume, acidity, and Lewis acid sites. Optimum desilication temperature (80 °C) was found as a best for an comprising extra active and selective mesoporous zeolite catalyst for citronellal cyclisation. Thus, this type of zeolite material has shown 100% conversion (e.g. complete conversion of citronellal reactants to the desired products), 95% isopulegol selectivity and highest reaction rate (0.11 min−1). This study exhibits the mesoporous zeolite (MZ-80 °C) as one of the most effective catalyst for citronellal cyclization reaction based on assessment of catalytic performance relative to other commonly available options.
AB - In this work, desilication reassembly post treatment process was applied in synthesis of mesoporous zeolite with stable phase composition and applied it in citronellal cyclisation reaction for the production of isopulegol. The desilication and temperature effects were further investigated on physical and chemical characteristics of zeolite and compared them with catalytic activity. The desilicated zeolite samples have been characterized with the help of N2-adsorption, XRD, ICP-OES, pyridine adsorption and FTIR techniques. Its performance was explored by controlling operative parameters. Experimental outcomes exhibited that desilication of zeolite would led to formation of mesopores inside the stable zeolite framework structures without substantial damage of their internal composition. These changes facilitate mass transfer and catalytic activity with an increase in surface area, mesoporosity, pore size, pore volume, acidity, and Lewis acid sites. Optimum desilication temperature (80 °C) was found as a best for an comprising extra active and selective mesoporous zeolite catalyst for citronellal cyclisation. Thus, this type of zeolite material has shown 100% conversion (e.g. complete conversion of citronellal reactants to the desired products), 95% isopulegol selectivity and highest reaction rate (0.11 min−1). This study exhibits the mesoporous zeolite (MZ-80 °C) as one of the most effective catalyst for citronellal cyclization reaction based on assessment of catalytic performance relative to other commonly available options.
UR - http://hdl.handle.net/10754/656424
UR - http://link.springer.com/10.1007/s11144-019-01617-6
UR - http://www.scopus.com/inward/record.url?scp=85068236920&partnerID=8YFLogxK
U2 - 10.1007/s11144-019-01617-6
DO - 10.1007/s11144-019-01617-6
M3 - Article
SN - 1878-5190
VL - 128
SP - 507
EP - 522
JO - Reaction Kinetics, Mechanisms and Catalysis
JF - Reaction Kinetics, Mechanisms and Catalysis
IS - 1
ER -