TY - JOUR
T1 - CO oxidation on PtSn nanoparticle catalysts occurs at the interface of Pt and Sn oxide domains formed under reaction conditions
AU - Michalak, William D.
AU - Krier, James M.
AU - Alayoglu, Selim
AU - Shin, Jae-Yoon
AU - An, Kwangjin
AU - Komvopoulos, Kyriakos
AU - Liu, Zhi
AU - Somorjai, Gabor A.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This research was funded by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract no. DE-AC02-05CH11231. K.K. also acknowledges funding provided by the UCB-KAUST Academic Excellence Alliance (AEA) Program. This work was performed in part at the Molecular Foundry and the Advanced Light Source, beamline 9.3.2 of the Lawrence Berkeley National Laboratory. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2014/4
Y1 - 2014/4
N2 - The barrier to CO oxidation on Pt catalysts is the strongly bound adsorbed CO, which inhibits O2 adsorption and hinders CO2 formation. Using reaction studies and in situ X-ray spectroscopy with colloidally prepared, monodisperse ∼2 nm Pt and PtSn nanoparticle catalysts, we show that the addition of Sn to Pt provides distinctly different reaction sites and a more efficient reaction mechanism for CO oxidation compared to pure Pt catalysts. To probe the influence of Sn, we intentionally poisoned the Pt component of the nanoparticle catalysts using a CO-rich atmosphere. With a reaction environment comprised of 100 Torr CO and 40 Torr O2 and a temperature range between 200 and 300 C, Pt and PtSn catalysts exhibited activation barriers for CO2 formation of 133 kJ/mol and 35 kJ/mol, respectively. While pure Sn is readily oxidized and is not active for CO oxidation, the addition of Sn to Pt provides an active site for O2 adsorption that is important when Pt is covered with CO. Sn oxide was identified as the active Sn species under reaction conditions by in situ ambient pressure X-ray photoelectron spectroscopy measurements. While chemical signatures of Pt and Sn indicated intermixed metallic components under reducing conditions, Pt and Sn were found to reversibly separate into isolated domains of Pt and oxidic Sn on the nanoparticle surface under reaction conditions of 100 mTorr CO and 40 mTorr O2 between temperatures of 200-275 C. Under these conditions, PtSn catalysts exhibited apparent reaction orders in O2 for CO 2 production that were 0.5 and lower with increasing partial pressures. These reaction orders contrast the first-order dependence in O 2 known for pure Pt. The differences in activation barriers, non-first-order dependence in O2, and the presence of a partially oxidized Sn indicate that the enhanced activity is due to a reaction mechanism that occurs at a Pt/Sn oxide interface present at the nanoparticle surface. © 2014 Published by Elsevier Inc.
AB - The barrier to CO oxidation on Pt catalysts is the strongly bound adsorbed CO, which inhibits O2 adsorption and hinders CO2 formation. Using reaction studies and in situ X-ray spectroscopy with colloidally prepared, monodisperse ∼2 nm Pt and PtSn nanoparticle catalysts, we show that the addition of Sn to Pt provides distinctly different reaction sites and a more efficient reaction mechanism for CO oxidation compared to pure Pt catalysts. To probe the influence of Sn, we intentionally poisoned the Pt component of the nanoparticle catalysts using a CO-rich atmosphere. With a reaction environment comprised of 100 Torr CO and 40 Torr O2 and a temperature range between 200 and 300 C, Pt and PtSn catalysts exhibited activation barriers for CO2 formation of 133 kJ/mol and 35 kJ/mol, respectively. While pure Sn is readily oxidized and is not active for CO oxidation, the addition of Sn to Pt provides an active site for O2 adsorption that is important when Pt is covered with CO. Sn oxide was identified as the active Sn species under reaction conditions by in situ ambient pressure X-ray photoelectron spectroscopy measurements. While chemical signatures of Pt and Sn indicated intermixed metallic components under reducing conditions, Pt and Sn were found to reversibly separate into isolated domains of Pt and oxidic Sn on the nanoparticle surface under reaction conditions of 100 mTorr CO and 40 mTorr O2 between temperatures of 200-275 C. Under these conditions, PtSn catalysts exhibited apparent reaction orders in O2 for CO 2 production that were 0.5 and lower with increasing partial pressures. These reaction orders contrast the first-order dependence in O 2 known for pure Pt. The differences in activation barriers, non-first-order dependence in O2, and the presence of a partially oxidized Sn indicate that the enhanced activity is due to a reaction mechanism that occurs at a Pt/Sn oxide interface present at the nanoparticle surface. © 2014 Published by Elsevier Inc.
UR - http://hdl.handle.net/10754/597788
UR - https://linkinghub.elsevier.com/retrieve/pii/S0021951714000153
UR - http://www.scopus.com/inward/record.url?scp=84894166225&partnerID=8YFLogxK
U2 - 10.1016/j.jcat.2014.01.005
DO - 10.1016/j.jcat.2014.01.005
M3 - Article
SN - 0021-9517
VL - 312
SP - 17
EP - 25
JO - Journal of Catalysis
JF - Journal of Catalysis
ER -