TY - JOUR
T1 - Combining multi-indicators with machine-learning algorithms for maize yield early prediction at the county-level in China
AU - Cheng, Minghan
AU - Penuelas, Josep
AU - McCabe, Matthew
AU - Atzberger, Clement
AU - Jiao, Xiyun
AU - Wu, Wenbin
AU - Jin, Xiuliang
N1 - KAUST Repository Item: Exported on 2022-07-05
Acknowledgements: This research was supported by the National Key Research and Development Program of China (grant 2021YFD1201602), National Natural Science Foundation of China (Grant No. 42071426, 51922072, 51779161, 51009101), and Central Public-interest Scientific Institution Basal Research Fund for Chinese Academy of Agricultural Sciences (Grant Nos. Y2020YJ07), the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences, Hainan Yazhou Bay Seed Lab (B21HJ0221), and Special Fund for Independent Innovation of Agricultural Science and Technology in Jiangsu, China (CX(21)3065).
PY - 2022/6/18
Y1 - 2022/6/18
N2 - The accurate and timely prediction of crop yield at a large scale is important for food security and the development of agricultural policy. An adaptable and robust method for estimating maize yield for the entire territory of China, however, is currently not available. The inherent trade-off between early estimates of yield and the accuracy of yield prediction also remains a confounding issue. To explore these challenges, we employ indicators such as GPP, ET, surface temperature (Ts), LAI, soil properties and maize phenological information with random forest regression (RFR) and gradient boosting decision tree (GBDT) machine learning approaches to provide maize yield estimates within China. The aims were to: (1) evaluate the accuracy of maize yield prediction obtained from multimodal data analysis using machine-learning; (2) identify the optimal period for estimating yield; and (3) determine the spatial robustness and adaptability of the proposed method. The results can be summarized as: (1) RFR estimated maize yield more accurately than GBDT; (2) Ts was the best single indicator for estimating yield, while the combination of GPP, Ts, ET and LAI proved best when multi-indicators were used (R2 = 0.77 and rRMSE = 16.15% for the RFR); (3) the prediction accuracy was lower with earlier lead time but remained relatively high within at least 24 days before maturity (R2 > 0.77 and rRMSE
AB - The accurate and timely prediction of crop yield at a large scale is important for food security and the development of agricultural policy. An adaptable and robust method for estimating maize yield for the entire territory of China, however, is currently not available. The inherent trade-off between early estimates of yield and the accuracy of yield prediction also remains a confounding issue. To explore these challenges, we employ indicators such as GPP, ET, surface temperature (Ts), LAI, soil properties and maize phenological information with random forest regression (RFR) and gradient boosting decision tree (GBDT) machine learning approaches to provide maize yield estimates within China. The aims were to: (1) evaluate the accuracy of maize yield prediction obtained from multimodal data analysis using machine-learning; (2) identify the optimal period for estimating yield; and (3) determine the spatial robustness and adaptability of the proposed method. The results can be summarized as: (1) RFR estimated maize yield more accurately than GBDT; (2) Ts was the best single indicator for estimating yield, while the combination of GPP, Ts, ET and LAI proved best when multi-indicators were used (R2 = 0.77 and rRMSE = 16.15% for the RFR); (3) the prediction accuracy was lower with earlier lead time but remained relatively high within at least 24 days before maturity (R2 > 0.77 and rRMSE
UR - http://hdl.handle.net/10754/679595
UR - https://linkinghub.elsevier.com/retrieve/pii/S0168192322002465
UR - http://www.scopus.com/inward/record.url?scp=85132708278&partnerID=8YFLogxK
U2 - 10.1016/j.agrformet.2022.109057
DO - 10.1016/j.agrformet.2022.109057
M3 - Article
SN - 0168-1923
VL - 323
SP - 109057
JO - Agricultural and Forest Meteorology
JF - Agricultural and Forest Meteorology
ER -