TY - JOUR
T1 - Comparative Glycoproteome Analysis: Dynamics of Protein Glycosylation during Metamorphic Transition from Pelagic to Benthic Life Stages in Three Invertebrates
AU - Chandramouli, Kondethimmanahalli
AU - Zhang, Yu
AU - Wong, Yue Him
AU - Qian, Pei-Yuan
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): SA-C0040, UK-00016
Acknowledgements: The authors thank Dr. Flora S. Y. Mok for her help in collecting P. vexillosa larvae, Dr. Kiyotaka Matsumura for his critical review of the manuscript, and Cherry Kwan for proof-reading the manuscript. This study was supported by an award from King Abdullah University of Science and Technology (SA-C0040/UK-00016) and a grant from the Research Grants Council of the Hong Kong Special Administrative Region (AoE/P-04/04-II) to P.-Y. Qian.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2011/12/15
Y1 - 2011/12/15
N2 - The life cycle of most benthic marine invertebrates has two distinct stages: the pelagic larval stage and the sessile juvenile stage. The transition between the larval stage and the juvenile stage is often abrupt and may be triggered by post-translational modification of proteins. Glycosylation, a very important post-translational modification, influences the biological activity of proteins. We used two-dimensional gel electrophoresis (2-DE) followed by glycoprotein-specific fluorescence staining and mass spectrometry with the goal of identifying glycosylation pattern changes during larval settlement and metamorphosis in barnacles, bryozoans, and polychaetes. Our results revealed substantial changes in the protein glycosylation patterns from larval to juvenile stages. Before metamorphosis, the degree of protein glycosylation was high in the barnacle Balanus (=Amphibalanus) amphitrite and the spionid polychaete Pseudopolydora vexillosa, whereas it increased after metamorphosis in the bryozoan Bugula neritina. We identified 19 abundant and differentially glycosylated proteins in these three species. Among the proteins, cellular stress- and metabolism-related proteins exhibited distinct glycosylation in B. amphitrite and B. neritina, whereas fatty acid metabolism-related proteins were abundantly glycosylated in P. vexillosa. Furthermore, the protein and gene expression analysis of some selected glycoproteins revealed that the degree of protein glycosylation did not always complement with transcriptional and translational changes associated with the larval-juvenile transition. The current study provides preliminary information on protein glycosylation in marine invertebrates that will serve as a solid basis for future comprehensive analysis of glycobiology during larval settlement and metamorphosis. © 2011 American Chemical Society.
AB - The life cycle of most benthic marine invertebrates has two distinct stages: the pelagic larval stage and the sessile juvenile stage. The transition between the larval stage and the juvenile stage is often abrupt and may be triggered by post-translational modification of proteins. Glycosylation, a very important post-translational modification, influences the biological activity of proteins. We used two-dimensional gel electrophoresis (2-DE) followed by glycoprotein-specific fluorescence staining and mass spectrometry with the goal of identifying glycosylation pattern changes during larval settlement and metamorphosis in barnacles, bryozoans, and polychaetes. Our results revealed substantial changes in the protein glycosylation patterns from larval to juvenile stages. Before metamorphosis, the degree of protein glycosylation was high in the barnacle Balanus (=Amphibalanus) amphitrite and the spionid polychaete Pseudopolydora vexillosa, whereas it increased after metamorphosis in the bryozoan Bugula neritina. We identified 19 abundant and differentially glycosylated proteins in these three species. Among the proteins, cellular stress- and metabolism-related proteins exhibited distinct glycosylation in B. amphitrite and B. neritina, whereas fatty acid metabolism-related proteins were abundantly glycosylated in P. vexillosa. Furthermore, the protein and gene expression analysis of some selected glycoproteins revealed that the degree of protein glycosylation did not always complement with transcriptional and translational changes associated with the larval-juvenile transition. The current study provides preliminary information on protein glycosylation in marine invertebrates that will serve as a solid basis for future comprehensive analysis of glycobiology during larval settlement and metamorphosis. © 2011 American Chemical Society.
UR - http://hdl.handle.net/10754/600217
UR - https://pubs.acs.org/doi/10.1021/pr200982k
UR - http://www.scopus.com/inward/record.url?scp=84863071126&partnerID=8YFLogxK
U2 - 10.1021/pr200982k
DO - 10.1021/pr200982k
M3 - Article
C2 - 22111546
SN - 1535-3893
VL - 11
SP - 1330
EP - 1340
JO - Journal of Proteome Research
JF - Journal of Proteome Research
IS - 2
ER -