TY - JOUR
T1 - Competition between chiral energy and chiral damping in the asymmetric expansion of magnetic bubbles
AU - Ganguly, Arnab
AU - Zhang, Senfu
AU - Mibhaimiron, Loan
AU - Kosel, Jürgen
AU - Zhang, Xixiang
AU - Manchon, Aurelien
AU - Singh, Nirpendra
AU - Anjum, Dalaver
AU - Das, Gobind
N1 - KAUST Repository Item: Exported on 2021-11-29
Acknowledgements: AG gratefully acknowledges the support from Khalifa University, UAE and PSE Division, KAUST, Saudi Arabia. In addition, GD and AG acknowledge the support of the Khalifa University internal funding FSU-2020-08 (8474000233).
PY - 2021/10
Y1 - 2021/10
N2 - Magnetic chirality is an important knob in spintronics and can be engineered through structural symmetry breaking of magnetic thin film multilayers. The dynamics of chiral domain walls is determined by the cooperation of chiral contributions in the magnetic energy functional as well as in the dissipation tensor which need to be better controlled for the sake of the device applications. In this work, we performed a systematic study of magnetic field-induced magnetic bubble expansion in structural inversion asymmetric multilayers with different Pt thicknesses using polar magneto-optical Kerr microscopy. Asymmetric expansion of magnetic bubble is investigated in the creep regime as a function of in-plane and out-of-plane magnetic fields. The results reveal the competition between two key mechanisms governing the asymmetry in the field-driven domain wall expansion, namely the Dzyaloshinskii-Moriya interaction and the chiral magnetic damping. The interplay between these two effects leads to the seemingly counterintuitive experimental signature, depending on the strength of the external magnetic field. The effective control on the bubble asymmetry expansion can be of great importance for future memory and multiplexer-based applications.
AB - Magnetic chirality is an important knob in spintronics and can be engineered through structural symmetry breaking of magnetic thin film multilayers. The dynamics of chiral domain walls is determined by the cooperation of chiral contributions in the magnetic energy functional as well as in the dissipation tensor which need to be better controlled for the sake of the device applications. In this work, we performed a systematic study of magnetic field-induced magnetic bubble expansion in structural inversion asymmetric multilayers with different Pt thicknesses using polar magneto-optical Kerr microscopy. Asymmetric expansion of magnetic bubble is investigated in the creep regime as a function of in-plane and out-of-plane magnetic fields. The results reveal the competition between two key mechanisms governing the asymmetry in the field-driven domain wall expansion, namely the Dzyaloshinskii-Moriya interaction and the chiral magnetic damping. The interplay between these two effects leads to the seemingly counterintuitive experimental signature, depending on the strength of the external magnetic field. The effective control on the bubble asymmetry expansion can be of great importance for future memory and multiplexer-based applications.
UR - http://hdl.handle.net/10754/672958
UR - https://pubs.acs.org/doi/10.1021/acsaelm.1c00592
UR - http://www.scopus.com/inward/record.url?scp=85119407088&partnerID=8YFLogxK
U2 - 10.1021/acsaelm.1c00592
DO - 10.1021/acsaelm.1c00592
M3 - Article
SN - 2637-6113
JO - ACS Applied Electronic Materials
JF - ACS Applied Electronic Materials
ER -