TY - JOUR
T1 - Complex Star Architectures of Well-Defined Polyethylene-Based Co/Terpolymers
AU - Ntetsikas, Konstantinos
AU - Zapsas, Georgios
AU - Bilalis, Panagiotis
AU - Gnanou, Yves
AU - Feng, Xueyan
AU - Thomas, Edwin L.
AU - Hadjichristidis, Nikos
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The research reported in this publication was supported by the King Abdullah University of Science and Technology (KAUST) under the grant CRG 2018-3808. X-ray scattering experiments utilized the facilities at Sector 12-ID-B at the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357.
PY - 2020/5/29
Y1 - 2020/5/29
N2 - Well-defined polyethylene (PE)-based 3-miktoarm star copolymers (PI)2PE-OH, PI2(PI′-b-PE)-OH and terpolymer PI2(PS-b-PE)-OH (PI: polyisoprene, PS: polystyrene), bearing a functional group (−OH) at the PE chain end, were synthesized by combining anionic polymerization, polyhomologation, and linking reaction with a “bridge” molecule, BF3OEt2. 4-(Dichloromethylsilyl)diphenylethylene was first synthesized and linked with anionically prepared linear PI, through titration, to afford the “living” star precursors. Subsequently, boron-linked macroinitiators were synthesized through linking reaction with BF3OEt2 for the polyhomologation of dimethylsulfoxonium methylide to produce novel PE-based miktoarm star polymers. All intermediates and final products were characterized by high-temperature size exclusion chromatography, proton nuclear magnetic resonance spectroscopy, and differential scanning calorimetry. The microdomain morphologies of the samples were elucidated by transmission electron microscopy imaging of microtomed sections as well as small-angle and wide-angle X-ray scattering as a function of the sample temperature. Depending on the relative degree of segregation (varying with the block molecular weight and the interaction parameter between blocks) versus the crystallization temperature of the PE block, both crystallization-driven microphase separation and segregation-driven order–disorder microphase separation can take place, resulting in various domain morphologies.
AB - Well-defined polyethylene (PE)-based 3-miktoarm star copolymers (PI)2PE-OH, PI2(PI′-b-PE)-OH and terpolymer PI2(PS-b-PE)-OH (PI: polyisoprene, PS: polystyrene), bearing a functional group (−OH) at the PE chain end, were synthesized by combining anionic polymerization, polyhomologation, and linking reaction with a “bridge” molecule, BF3OEt2. 4-(Dichloromethylsilyl)diphenylethylene was first synthesized and linked with anionically prepared linear PI, through titration, to afford the “living” star precursors. Subsequently, boron-linked macroinitiators were synthesized through linking reaction with BF3OEt2 for the polyhomologation of dimethylsulfoxonium methylide to produce novel PE-based miktoarm star polymers. All intermediates and final products were characterized by high-temperature size exclusion chromatography, proton nuclear magnetic resonance spectroscopy, and differential scanning calorimetry. The microdomain morphologies of the samples were elucidated by transmission electron microscopy imaging of microtomed sections as well as small-angle and wide-angle X-ray scattering as a function of the sample temperature. Depending on the relative degree of segregation (varying with the block molecular weight and the interaction parameter between blocks) versus the crystallization temperature of the PE block, both crystallization-driven microphase separation and segregation-driven order–disorder microphase separation can take place, resulting in various domain morphologies.
UR - http://hdl.handle.net/10754/662984
UR - https://pubs.acs.org/doi/10.1021/acs.macromol.0c00668
UR - http://www.scopus.com/inward/record.url?scp=85086592863&partnerID=8YFLogxK
U2 - 10.1021/acs.macromol.0c00668
DO - 10.1021/acs.macromol.0c00668
M3 - Article
SN - 0024-9297
JO - Macromolecules
JF - Macromolecules
ER -