Computational sensing of herpes simplex virus using a cost-effective on-chip microscope

Aniruddha Ray, Mustafa Ugur Daloglu, Joslynn Ho, Avee Torres, Euan Mcleod, Aydogan Ozcan

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

Caused by the herpes simplex virus (HSV), herpes is a viral infection that is one of the most widespread diseases worldwide. Here we present a computational sensing technique for specific detection of HSV using both viral immuno-specificity and the physical size range of the viruses. This label-free approach involves a compact and cost-effective holographic on-chip microscope and a surface-functionalized glass substrate prepared to specifically capture the target viruses. To enhance the optical signatures of individual viruses and increase their signal-to-noise ratio, self-assembled polyethylene glycol based nanolenses are rapidly formed around each virus particle captured on the substrate using a portable interface. Holographic shadows of specifically captured viruses that are surrounded by these self-assembled nanolenses are then reconstructed, and the phase image is used for automated quantification of the size of each particle within our large field-of-view, ~30 mm2. The combination of viral immuno-specificity due to surface functionalization and the physical size measurements enabled by holographic imaging is used to sensitively detect and enumerate HSV particles using our compact and cost-effective platform. This computational sensing technique can find numerous uses in global health related applications in resource-limited environments.
Original languageEnglish (US)
JournalScientific Reports
Volume7
Issue number1
DOIs
StatePublished - Jul 7 2017
Externally publishedYes

Fingerprint

Dive into the research topics of 'Computational sensing of herpes simplex virus using a cost-effective on-chip microscope'. Together they form a unique fingerprint.

Cite this