Computing security strategies in finite horizon repeated Bayesian games

Lichun Li, Cedric Langbort, Jeff Shamma

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

This paper studies security strategies in two-player zero-sum repeated Bayesian games with finite horizon. In such games, each player has a private type which is independently chosen according to a publicly known a priori probability. Players' types are fixed all through the game. The game is played for finite stages. At every stage, players simultaneously choose their actions which are observed by the public. The one-stage payoff of player 1 (or penalty to player 2) depends on both players types and actions, and is not directly observed by any player. While player 1 aims to maximize the total payoff over the game, player 2 wants to minimize it. This paper provides each player two ways to compute the security strategy, i.e. The optimal strategy in the worst case. First, a security strategy that directly depends on both players' history actions is derived by refining the sequence form. Noticing that history action space grows exponentially with respect to the time horizon, this paper further presents a security strategy that depends on player's fixed sized sufficient statistics. The sufficient statistics is shown to consist of the belief on one's own type, the regret on the other player's type, and the stage, and is independent of the other player's strategy.

Original languageEnglish (US)
Title of host publication2017 American Control Conference, ACC 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3664-3669
Number of pages6
ISBN (Electronic)9781509059928
DOIs
StatePublished - Jun 29 2017
Event2017 American Control Conference, ACC 2017 - Seattle, United States
Duration: May 24 2017May 26 2017

Publication series

NameProceedings of the American Control Conference
ISSN (Print)0743-1619

Conference

Conference2017 American Control Conference, ACC 2017
Country/TerritoryUnited States
CitySeattle
Period05/24/1705/26/17

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Computing security strategies in finite horizon repeated Bayesian games'. Together they form a unique fingerprint.

Cite this