Conceptual study of AC-powered switched non-polarized-capacitors based solid-state bipolar Marx pulse generator

Ahmed A. Elserougi*, Ziyad Shafik, Ahmed M. Massoud, Shehab Ahmed

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

The conventional unipolar Marx generator can be employed for bipolar pulsed electric field by adding a high-voltage H-bridge at the load side which necessitates stacked switches. Alternatively, bipolar Marx generator with low-voltage switches can be employed. The existing bipolar Marx generators are typically fed from dc supplies, where polarized capacitors are employed. The capacitance of involved capacitors is selected such that the total energy stored in the generator's capacitors is higher than the bipolar pulse energy. As a result, polarized capacitors with relatively high capacitances are required. In addition, a high number of controlled switches per stage are required (at least four switches per stage). In this paper, a new solid-state bipolar Marx pulse generator with only three controlled switches per stage is proposed. The proposed generator is fed from sinusoidal/square ac voltage and non-polarized capacitors with low capacitance are employed. The proposed bipolar Marx-generator can be used effectively with resistive loads for exponential pulse generation. A detailed illustration of the proposed approach is presented and a discussion, to elucidate the differences between the proposed pulse generator and the other existing ones, are presented. Simulation results for the proposed pulse generator are presented to validate the concept. Finally, experimental results have been obtained from a low-voltage model of the proposed generator.

Original languageEnglish (US)
Article number8035384
Pages (from-to)2141-2147
Number of pages7
JournalIEEE Transactions on Dielectrics and Electrical Insulation
Volume24
Issue number4
DOIs
StatePublished - 2017
Externally publishedYes

Keywords

  • Marx generator
  • Pulsed power system
  • capacitors

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Conceptual study of AC-powered switched non-polarized-capacitors based solid-state bipolar Marx pulse generator'. Together they form a unique fingerprint.

Cite this