TY - JOUR
T1 - Constitutive modeling of void-growth-based tensile ductile failures with stress triaxiality effects
AU - Mora Cordova, Angel
AU - Liu, Jinxing
AU - El Sayed, Tamer S.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This work was fully funded by the MUST baseline fund.
PY - 2014/7
Y1 - 2014/7
N2 - In most metals and alloys, the evolution of voids has been generally recognized as the basic failure mechanism. Furthermore, stress triaxiality has been found to influence void growth dramatically. Besides strain intensity, it is understood to be the most important factor that controls the initiation of ductile fracture. We include sensitivity of stress triaxiality in a variational porous plasticity model, which was originally derived from hydrostatic expansion. Under loading conditions rather than hydrostatic deformation, we allow the critical pressure for voids to be exceeded so that the growth due to plasticity becomes dependent on the stress triaxiality. The limitations of the spherical void growth assumption are investigated. Our improved constitutive model is validated through good agreements with experimental data. Its capacity for reproducing realistic failure patterns is also indicated by a numerical simulation of a compact tensile (CT) test. © 2013 Elsevier Inc.
AB - In most metals and alloys, the evolution of voids has been generally recognized as the basic failure mechanism. Furthermore, stress triaxiality has been found to influence void growth dramatically. Besides strain intensity, it is understood to be the most important factor that controls the initiation of ductile fracture. We include sensitivity of stress triaxiality in a variational porous plasticity model, which was originally derived from hydrostatic expansion. Under loading conditions rather than hydrostatic deformation, we allow the critical pressure for voids to be exceeded so that the growth due to plasticity becomes dependent on the stress triaxiality. The limitations of the spherical void growth assumption are investigated. Our improved constitutive model is validated through good agreements with experimental data. Its capacity for reproducing realistic failure patterns is also indicated by a numerical simulation of a compact tensile (CT) test. © 2013 Elsevier Inc.
UR - http://hdl.handle.net/10754/563011
UR - https://linkinghub.elsevier.com/retrieve/pii/S0307904X13007853
UR - http://www.scopus.com/inward/record.url?scp=84900838704&partnerID=8YFLogxK
U2 - 10.1016/j.apm.2013.11.049
DO - 10.1016/j.apm.2013.11.049
M3 - Article
SN - 0307-904X
VL - 38
SP - 3212
EP - 3221
JO - Applied Mathematical Modelling
JF - Applied Mathematical Modelling
IS - 13
ER -