TY - JOUR
T1 - Construction of a Minimum Energy Path for the VT Flash Model by the String Method Coupled with the Exponential Time Differencing Scheme
AU - Zhang, Yuze
AU - Li, Yiteng
AU - Zhang, Lei
AU - Sun, Shuyu
N1 - KAUST Repository Item: Exported on 2021-11-11
Acknowledged KAUST grant number(s): BAS/1/1351-01, REP/1/2879-01, URF/1/3769-01, URF/1/4074-01
Acknowledgements: The authors greatly thank for the support from the National Natural Science Foundation of China (grant number 51874262, 51936001,11802090, 12050002) and the Research Funding from King Abdullah University of Science and Technology (KAUST) through
the grants BAS/1/1351-01, URF/1/4074-01, URF/1/3769-01, and REP/1/2879-01.
PY - 2021
Y1 - 2021
N2 - Flash calculation plays significant roles in petroleum and chemical industries. Since Michelsen proposed his milestone studies in 1982, through several decades of development, the current research interests on flash calculation have been shifted from accuracy to efficiency, but the ultimate goal remains the same; that is accurate determination of equilibrium phase amounts and compositions at a given condition. On the other hand, finding the transition route and its related saddle point is often crucial to understand the whole energy landscape of flash models, which would provide new insights for designing numerical algorithms or optimizing existing ones. In
this study, an efficient numerical approach is developed by coupling the string method with the exponential time differencing (ETD) scheme to investigate the minimum energy paths and first-order saddle points of VT flash models with Peng-Robinson equation of state. As a promising alternative to the conventional approach, VT flash calculates phase equilibria under a new variable specification of volume and temperature. The Rosenbrock-type ETD scheme is used to reduce the computational difficulty caused by the high stiffness of the model systems. The proposed ETD-String method successfully calculates the minimum energy paths of single-component and two-component VT flash models with strong stiffness. Numerical results also show good feasibility and accuracy in calculation of equilibrium phase amounts and compositions.
AB - Flash calculation plays significant roles in petroleum and chemical industries. Since Michelsen proposed his milestone studies in 1982, through several decades of development, the current research interests on flash calculation have been shifted from accuracy to efficiency, but the ultimate goal remains the same; that is accurate determination of equilibrium phase amounts and compositions at a given condition. On the other hand, finding the transition route and its related saddle point is often crucial to understand the whole energy landscape of flash models, which would provide new insights for designing numerical algorithms or optimizing existing ones. In
this study, an efficient numerical approach is developed by coupling the string method with the exponential time differencing (ETD) scheme to investigate the minimum energy paths and first-order saddle points of VT flash models with Peng-Robinson equation of state. As a promising alternative to the conventional approach, VT flash calculates phase equilibria under a new variable specification of volume and temperature. The Rosenbrock-type ETD scheme is used to reduce the computational difficulty caused by the high stiffness of the model systems. The proposed ETD-String method successfully calculates the minimum energy paths of single-component and two-component VT flash models with strong stiffness. Numerical results also show good feasibility and accuracy in calculation of equilibrium phase amounts and compositions.
UR - http://hdl.handle.net/10754/673287
UR - http://global-sci.org/intro/article_detail/cicp/19939.html
U2 - 10.4208/cicp.OA-2021-0024
DO - 10.4208/cicp.OA-2021-0024
M3 - Article
SN - 1991-7120
VL - 30
SP - 1529
EP - 1544
JO - Communications in Computational Physics
JF - Communications in Computational Physics
IS - 5
ER -