Construction of Six Coordination Polymers Based on a 5,5′-(1,2-Ethynyl)bis-1,3-benzenedicarboxylic Ligand: Synthesis, Structure, Gas Sorption, and Magnetic Properties

Bing Zheng, Jiahuan Luo, Fang Wang, Yu Peng, Guanghua Li, Qisheng Huo, Yunling Liu

Research output: Contribution to journalArticlepeer-review

62 Scopus citations

Abstract

Six novel coordination polymers based on a multifunctional ligand, 5,5'-(1,2-ethynyl)bis-1,3-benzenedicarboxylic (H4EBDC), namely, |(C3H7NO)2(H2O)7(C 2H5OH)3| [Zn2(C18H 6O8)(C10H8N2) 2] (1), |(C3H7NO)3(H2O)30- (CH3CN)2|[Zn 6(C18H6O8)3(C 6H12N2O2)2] (2), |(C 3H7NO)2- (H2O)2(H 3O)2|[Cd3(C18H6O 8)2] (3), |(C3H7NO)|[Mn- (C 18H8O8)(C3H7NO) 2] (4), |(C3H7NO)2(H2O)(C 2H7N)3| [Mn6(C18H 7O8)4(H2O)8] (5), and [Mn2(C18H6O8)(C3H 7NO)2] (6), have been constructed under solvothermal conditions and structurally characterized by single-crystal X-ray diffraction. In these compounds, the ligand, H4EBDC, exhibits different coordination modes and conformations, constructing various architectures by bridging a variety of metal ions or polynuclear clusters. Compound 1 forms a three-dimensional (3D) FSC network constructed from two-dimensional (2D) layer motifs joined by EBDC4- and 4,4'-bipyridine bridges. Compound 2 possesses an NbO topology by linking Zn2(CO2)4 units with the ligand, coordinated amine molecules fill the pores, while compound 3 exhibits a 3D FLU network with Cd2+ as the cation and features an infinite framework built from tricadmium clusters. Compound 4 is based on PtS net, constructed of 4-connected rectangular H4EBDC units with tetrahedral monometallic Mn(CO2)4 nodes. Compound 5 is composed of 2D layers with (3,6)-connected KGD topology, and compound 6 consists of a 3D PtS-X network, built by bridging a metal chain with the ligand. The structures of these compounds have been discussed together with their corresponding properties, such as gas storage, separation, and magnetic properties. © 2013 American Chemical Society.
Original languageEnglish (US)
Pages (from-to)1033-1044
Number of pages12
JournalCrystal Growth & Design
Volume13
Issue number3
DOIs
StatePublished - Jan 30 2013
Externally publishedYes

Fingerprint

Dive into the research topics of 'Construction of Six Coordination Polymers Based on a 5,5′-(1,2-Ethynyl)bis-1,3-benzenedicarboxylic Ligand: Synthesis, Structure, Gas Sorption, and Magnetic Properties'. Together they form a unique fingerprint.

Cite this