Contrasted resistance of stone-dwelling Geodermatophilaceae species to stresses known to give rise to reactive oxygen species

Maher Gtari*, Imen Essoussi, Radhi Maaoui, Haïtham Sghaier, Rabeb Boujmil, Jérôme Gury, Petar Pujic, Lorenzo Brusetti, Bessem Chouaia, Elena Crotti, Daniele Daffonchio, Abdellatif Boudabous, Philippe Normand

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

91 Scopus citations

Abstract

Stones in arid environments are inhabited by actinobacteria of the family Geodermatophilaceae like the genera Blastococcus and Modestobacter frequently isolated from altered calcarenites. Their habitat requires adaptation to light-induced and other stresses that generate reactive oxygen species. Here, we show that representative members of the species Blastococcus saxobsidens, Geodermatophilus obscurus, and Modestobacter multiseptatus are differentially adapted to stresses associated with arid environments. Whereas B. saxobsidens was found to be sensitive to gamma radiation (D10 = 900 Gy; 10% survival at 900 Gy), M. multiseptatus was moderately (D10 = 6000 Gy) and G. obscurus was highly tolerant (D10 = 9000 Gy). A difference in resistance to high-frequency (λ value = 254 nm) UV was shown by B. saxobsidens, M. multiseptatus, and G. obscurus, being sensitive, tolerant, and highly tolerant (D10 of 6, 900, and > 3500 kJ m-2, respectively). Tolerance to desiccation, mitomycin C and hydrogen peroxide correlated with the ionizing radiation and UV resistance profiles of the three species and were correlated with the pigments synthesized. Resistance to heavy metals/metalloids did not follow the same pattern, with resistance to Ag2+ and Pb2+ being similar for B. saxobsidens, M. multiseptatus, and G. obscurus, whereas resistance to AsO4 3-, Cr2+, or Cu2+ was greater for B. saxobsidens than for the other two species. The stress resistance profiles of M. multiseptatus and B. saxobsidens were reflected in different calcarenite colonization patterns. While M. multiseptatus was predominantly isolated from the first two millimeters of stone surface, B. saxobsidens was predominantly isolated from the deeper part of the stone where it is better protected from sun irradiation, suggesting that the response to light- and desiccation-induced oxidative stress is an important driver for niche colonization in the stone biotope.

Original languageEnglish (US)
Pages (from-to)566-577
Number of pages12
JournalFEMS MICROBIOLOGY ECOLOGY
Volume80
Issue number3
DOIs
StatePublished - Jun 2012
Externally publishedYes

Keywords

  • Gamma radiation
  • Geodermatophilaceae
  • Heavy metals
  • Ionizing radiation
  • Reactive oxygen species-generating stresses
  • UV

ASJC Scopus subject areas

  • Microbiology
  • Ecology
  • Applied Microbiology and Biotechnology

Fingerprint

Dive into the research topics of 'Contrasted resistance of stone-dwelling Geodermatophilaceae species to stresses known to give rise to reactive oxygen species'. Together they form a unique fingerprint.

Cite this