TY - JOUR
T1 - Contribution of different effluent organic matter fractions to membrane fouling in ultrafiltration of treated domestic wastewater
AU - Zheng, Xing
AU - Croue, Jean-Philippe
N1 - KAUST Repository Item: Exported on 2020-10-01
PY - 2012/12/1
Y1 - 2012/12/1
N2 - In the present work, effluent organic matter (EfOM) in treated domestic wastewater was separated into hydrophobic neutrals, colloids, hydrophobic acids, transphilic acids and neutrals and hydrophilic compounds. Their contribution to dissolved organic carbon (DOC) was identified. Further characterization was conducted with respect to molecular size and hydrophobicity. Each isolated fraction was dosed into salt solution to identify its fouling potential in ultrafiltration (UF) using a hydrophilized polyethersulfone membrane. The results show that each kind of EfOM leads to irreversible fouling. At similar delivered DOC load to the membrane, colloids present the highest fouling effect in terms of both reversible and irreversible fouling. The hydrophobic organics show much lower reversibility than the biopolymers present. However, as they are of much smaller size than the membrane pore opening, they cannot lead to such severe fouling as biopolymers do. In all of the isolated fractions, hydrophilics show the lowest fouling potential. For either colloids or hydrophobic substances, increasing their content in feedwater leads to worse fouling. The co-effect between biopolymers and other EfOM fractions has also been identified as one of the mechanisms contributing to UF fouling in filtering EfOM-containing waters. © IWA Publishing 2012.
AB - In the present work, effluent organic matter (EfOM) in treated domestic wastewater was separated into hydrophobic neutrals, colloids, hydrophobic acids, transphilic acids and neutrals and hydrophilic compounds. Their contribution to dissolved organic carbon (DOC) was identified. Further characterization was conducted with respect to molecular size and hydrophobicity. Each isolated fraction was dosed into salt solution to identify its fouling potential in ultrafiltration (UF) using a hydrophilized polyethersulfone membrane. The results show that each kind of EfOM leads to irreversible fouling. At similar delivered DOC load to the membrane, colloids present the highest fouling effect in terms of both reversible and irreversible fouling. The hydrophobic organics show much lower reversibility than the biopolymers present. However, as they are of much smaller size than the membrane pore opening, they cannot lead to such severe fouling as biopolymers do. In all of the isolated fractions, hydrophilics show the lowest fouling potential. For either colloids or hydrophobic substances, increasing their content in feedwater leads to worse fouling. The co-effect between biopolymers and other EfOM fractions has also been identified as one of the mechanisms contributing to UF fouling in filtering EfOM-containing waters. © IWA Publishing 2012.
UR - http://hdl.handle.net/10754/562451
UR - https://iwaponline.com/jwrd/article/2/4/204/28628/Contribution-of-different-effluent-organic-matter
UR - http://www.scopus.com/inward/record.url?scp=84886946309&partnerID=8YFLogxK
U2 - 10.2166/wrd.2012.021
DO - 10.2166/wrd.2012.021
M3 - Article
SN - 2220-1319
VL - 2
SP - 204
EP - 209
JO - Journal of Water Reuse and Desalination
JF - Journal of Water Reuse and Desalination
IS - 4
ER -