TY - GEN
T1 - Controlled delivery of antiangiogenic drug to human eye tissue using a MEMS device
AU - Pirmoradi, Fatemeh Nazly
AU - Ou, Kevin
AU - Jackson, John K.
AU - Letchford, Kevin
AU - Cui, Jing
AU - Wolf, Ki Tae
AU - Graber, Florian
AU - Zhao, Tom
AU - Matsubara, Joanne A.
AU - Burt, Helen
AU - Chiao, Mu
AU - Lin, Liwei
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This work was funded in part by the CollaborativeHealth Research Projects, Natural Science andEngineering Research Council of Canada, the CanadianInstitutes of Health Research, and an AcademicExcellence Alliance grant awarded by the KAUST Officeof Competitive Research Funds. Mu Chiao is supportedby the Canada Research Chairs Program. Authors wouldlike to thank Mr. Tom Brubaker and Ms. Kye Lee,undergraduate students in the Lin lab, for their assistance.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2013/1
Y1 - 2013/1
N2 - We demonstrate an implantable MEMS drug delivery device to conduct controlled and on-demand, ex vivo drug transport to human eye tissue. Remotely operated drug delivery to human post-mortem eyes was performed via a MEMS device. The developed curved packaging cover conforms to the eyeball thereby preventing the eye tissue from contacting the actuating membrane. By pulsed operation of the device, using an externally applied magnetic field, the drug released from the device accumulates in a cavity adjacent to the tissue. As such, docetaxel (DTX), an antiangiogenic drug, diffuses through the eye tissue, from sclera and choroid to retina. DTX uptake by sclera and choroid were measured to be 1.93±0.66 and 7.24±0.37 μg/g tissue, respectively, after two hours in pulsed operation mode (10s on/off cycles) at 23°C. During this period, a total amount of 192 ng DTX diffused into the exposed tissue. This MEMS device shows great potential for the treatment of ocular posterior segment diseases such as diabetic retinopathy by introducing a novel way of drug administration to the eye. © 2013 IEEE.
AB - We demonstrate an implantable MEMS drug delivery device to conduct controlled and on-demand, ex vivo drug transport to human eye tissue. Remotely operated drug delivery to human post-mortem eyes was performed via a MEMS device. The developed curved packaging cover conforms to the eyeball thereby preventing the eye tissue from contacting the actuating membrane. By pulsed operation of the device, using an externally applied magnetic field, the drug released from the device accumulates in a cavity adjacent to the tissue. As such, docetaxel (DTX), an antiangiogenic drug, diffuses through the eye tissue, from sclera and choroid to retina. DTX uptake by sclera and choroid were measured to be 1.93±0.66 and 7.24±0.37 μg/g tissue, respectively, after two hours in pulsed operation mode (10s on/off cycles) at 23°C. During this period, a total amount of 192 ng DTX diffused into the exposed tissue. This MEMS device shows great potential for the treatment of ocular posterior segment diseases such as diabetic retinopathy by introducing a novel way of drug administration to the eye. © 2013 IEEE.
UR - http://hdl.handle.net/10754/597860
UR - http://ieeexplore.ieee.org/document/6474161/
UR - http://www.scopus.com/inward/record.url?scp=84875417910&partnerID=8YFLogxK
U2 - 10.1109/MEMSYS.2013.6474161
DO - 10.1109/MEMSYS.2013.6474161
M3 - Conference contribution
SN - 9781467356558
SP - 1
EP - 4
BT - 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS)
PB - Institute of Electrical and Electronics Engineers (IEEE)
ER -