TY - JOUR
T1 - Convergence analysis of inexact randomized iterative methods
AU - Loizou, Nicolas
AU - Richtarik, Peter
N1 - KAUST Repository Item: Exported on 2021-01-21
Acknowledgements: The authors would like to acknowledge Robert Mansel Gower, Georgios Loizou, Aritra Dutta, and Rachael Tappenden for useful discussions.
PY - 2020/12/15
Y1 - 2020/12/15
N2 - In this paper we present a convergence rate analysis of inexact variants of several randomized iterative methods for solving three closely related problems: a convex stochastic quadratic optimization problem, a best approximation problem, and its dual, a concave quadratic maximization problem. Among the methods studied are stochastic gradient descent, stochastic Newton, stochastic proximal point, and stochastic subspace ascent. A common feature of these methods is that in their update rule a certain subproblem needs to be solved exactly. We relax this requirement by allowing for the subproblem to be solved inexactly. We provide iteration complexity results under several assumptions on the inexactness error. Inexact variants of many popular and some more exotic methods, including randomized block Kaczmarz, Gaussian block Kaczmarz, and randomized block coordinate descent, can be cast as special cases. Numerical experiments demonstrate the benefits of allowing inexactness.
AB - In this paper we present a convergence rate analysis of inexact variants of several randomized iterative methods for solving three closely related problems: a convex stochastic quadratic optimization problem, a best approximation problem, and its dual, a concave quadratic maximization problem. Among the methods studied are stochastic gradient descent, stochastic Newton, stochastic proximal point, and stochastic subspace ascent. A common feature of these methods is that in their update rule a certain subproblem needs to be solved exactly. We relax this requirement by allowing for the subproblem to be solved inexactly. We provide iteration complexity results under several assumptions on the inexactness error. Inexact variants of many popular and some more exotic methods, including randomized block Kaczmarz, Gaussian block Kaczmarz, and randomized block coordinate descent, can be cast as special cases. Numerical experiments demonstrate the benefits of allowing inexactness.
UR - http://hdl.handle.net/10754/660271
UR - https://epubs.siam.org/doi/10.1137/19M125248X
UR - http://www.scopus.com/inward/record.url?scp=85099065193&partnerID=8YFLogxK
U2 - 10.1137/19M125248X
DO - 10.1137/19M125248X
M3 - Article
SN - 1095-7197
VL - 42
SP - A3979-A4016
JO - SIAM Journal on Scientific Computing
JF - SIAM Journal on Scientific Computing
IS - 6
ER -