TY - JOUR

T1 - Converging cylindrical magnetohydrodynamic shock collapse onto a power-law-varying line current

AU - Mostert, W.

AU - Pullin, D. I.

AU - Samtaney, Ravi

AU - Wheatley, V.

N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): URF/1/2162-01
Acknowledgements: This research was supported under Australian Research Council's Discovery Projects funding scheme (project number DP120102378). W. Mostert is supported by an Australian Postgraduate Award and was the recipient of a Graduate School International Travel Award from the University of Queensland. In addition, V. Wheatley is the recipient of an Australian Research Council Discovery Early Career Researcher Award (project number DE120102942). This work was partially supported by the KAUST Office of Sponsored Research under award URF/1/2162-01.

PY - 2016/3/16

Y1 - 2016/3/16

N2 - We investigate the convergence behaviour of a cylindrical, fast magnetohydrodynamic (MHD) shock wave in a neutrally ionized gas collapsing onto an axial line current that generates a power law in time, azimuthal magnetic field. The analysis is done within the framework of a modified version of ideal MHD for an inviscid, non-dissipative, neutrally ionized compressible gas. The time variation of the magnetic field is tuned such that it approaches zero at the instant that the shock reaches the axis. This configuration is motivated by the desire to produce a finite magnetic field at finite shock radius but a singular gas pressure and temperature at the instant of shock impact. Our main focus is on the variation with shock radius, as, of the shock Mach number and pressure behind the shock as a function of the magnetic field power-law exponent, where gives a constant-in-time line current. The flow problem is first formulated using an extension of geometrical shock dynamics (GSD) into the time domain to take account of the time-varying conditions ahead of the converging shock, coupled with appropriate shock-jump conditions for a fast, symmetric MHD shock. This provides a pair of ordinary differential equations describing both and the time evolution on the shock, as a function of, constrained by a collapse condition required to achieve tuned shock convergence. Asymptotic, analytical results for and are obtained over a range of for general, and for both small and large . In addition, numerical solutions of the GSD equations are performed over a large range of, for selected parameters using . The accuracy of the GSD model is verified for some cases using direct numerical solution of the full, radially symmetric MHD equations using a shock-capturing method. For the GSD solutions, it is found that the physical character of the shock convergence to the axis is a strong function of . For μ≤0.816, and both approach unity at shock impact owing to the dominance of the strong magnetic field over the amplifying effects of geometrical convergence. When (for γ=5/3 ), geometrical convergence is dominant and the shock behaves similarly to a converging gas dynamic shock with singular and. For

AB - We investigate the convergence behaviour of a cylindrical, fast magnetohydrodynamic (MHD) shock wave in a neutrally ionized gas collapsing onto an axial line current that generates a power law in time, azimuthal magnetic field. The analysis is done within the framework of a modified version of ideal MHD for an inviscid, non-dissipative, neutrally ionized compressible gas. The time variation of the magnetic field is tuned such that it approaches zero at the instant that the shock reaches the axis. This configuration is motivated by the desire to produce a finite magnetic field at finite shock radius but a singular gas pressure and temperature at the instant of shock impact. Our main focus is on the variation with shock radius, as, of the shock Mach number and pressure behind the shock as a function of the magnetic field power-law exponent, where gives a constant-in-time line current. The flow problem is first formulated using an extension of geometrical shock dynamics (GSD) into the time domain to take account of the time-varying conditions ahead of the converging shock, coupled with appropriate shock-jump conditions for a fast, symmetric MHD shock. This provides a pair of ordinary differential equations describing both and the time evolution on the shock, as a function of, constrained by a collapse condition required to achieve tuned shock convergence. Asymptotic, analytical results for and are obtained over a range of for general, and for both small and large . In addition, numerical solutions of the GSD equations are performed over a large range of, for selected parameters using . The accuracy of the GSD model is verified for some cases using direct numerical solution of the full, radially symmetric MHD equations using a shock-capturing method. For the GSD solutions, it is found that the physical character of the shock convergence to the axis is a strong function of . For μ≤0.816, and both approach unity at shock impact owing to the dominance of the strong magnetic field over the amplifying effects of geometrical convergence. When (for γ=5/3 ), geometrical convergence is dominant and the shock behaves similarly to a converging gas dynamic shock with singular and. For

UR - http://hdl.handle.net/10754/621641

UR - https://www.cambridge.org/core/product/identifier/S0022112016001385/type/journal_article

UR - http://www.scopus.com/inward/record.url?scp=84962598379&partnerID=8YFLogxK

U2 - 10.1017/jfm.2016.138

DO - 10.1017/jfm.2016.138

M3 - Article

SN - 0022-1120

VL - 793

SP - 414

EP - 443

JO - Journal of Fluid Mechanics

JF - Journal of Fluid Mechanics

ER -