TY - JOUR
T1 - Cooperative Charge Pumping and Enhanced Skyrmion Mobility
AU - Abbout, Adel
AU - Weston, Joseph
AU - Waintal, Xavier
AU - Manchon, Aurelien
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: A. A. and A. M. acknowledge financial support from the King Abdullah University of Science and Technology (KAUST). We acknowledge computing time on the supercomputers SHAHEEN at KAUST Supercomputing Centre and the team assistance. X. W. acknowledges financial support from ANR Fully Quantum. A. A. thanks A. Salimath, P. B. Ndiaye, S. Ghosh, and C. A. Akosa for useful discussions.
PY - 2018/12/19
Y1 - 2018/12/19
N2 - It is well known that moving magnetic textures may pump spin and charge currents along the direction of motion, a phenomenon called electronic pumping. Here, the electronic pumping arising from the steady motion of ferromagnetic skyrmions is investigated by solving the time evolution of the Schrödinger equation implemented on a tight-binding model with the statistical physics of the many-body problem. In contrast with rigid one-dimensional magnetic textures, we show that steadily moving magnetic skyrmions are able to pump large dc currents. This ability arises from their nontrivial magnetic topology, i.e., the coexistence of the spin-motive force and the topological Hall effect. Based on an adiabatic scattering theory, we compute the pumped current and demonstrate that it scales with the reflection coefficient of the conduction electrons against the skyrmion. In other words, in the semiclassical limit, reducing the size of the skyrmion and the width of the nanowire enhances this effect, making it scalable. We propose that such a phenomenon can be exploited in the context of racetrack devices, where the electronic pumping enhances the collective motion of the train of skyrmions.
AB - It is well known that moving magnetic textures may pump spin and charge currents along the direction of motion, a phenomenon called electronic pumping. Here, the electronic pumping arising from the steady motion of ferromagnetic skyrmions is investigated by solving the time evolution of the Schrödinger equation implemented on a tight-binding model with the statistical physics of the many-body problem. In contrast with rigid one-dimensional magnetic textures, we show that steadily moving magnetic skyrmions are able to pump large dc currents. This ability arises from their nontrivial magnetic topology, i.e., the coexistence of the spin-motive force and the topological Hall effect. Based on an adiabatic scattering theory, we compute the pumped current and demonstrate that it scales with the reflection coefficient of the conduction electrons against the skyrmion. In other words, in the semiclassical limit, reducing the size of the skyrmion and the width of the nanowire enhances this effect, making it scalable. We propose that such a phenomenon can be exploited in the context of racetrack devices, where the electronic pumping enhances the collective motion of the train of skyrmions.
UR - http://hdl.handle.net/10754/627495
UR - https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.257203
UR - http://www.scopus.com/inward/record.url?scp=85059111487&partnerID=8YFLogxK
U2 - 10.1103/PhysRevLett.121.257203
DO - 10.1103/PhysRevLett.121.257203
M3 - Article
C2 - 30608824
SN - 0031-9007
VL - 121
JO - Physical Review Letters
JF - Physical Review Letters
IS - 25
ER -