TY - JOUR
T1 - Copper (I) Selenocyanate (CuSeCN) as a Novel Hole-Transport Layer for Transistors, Organic Solar Cells, and Light-Emitting Diodes
AU - Wijeyasinghe, Nilushi
AU - Tsetseris, Leonidas
AU - Regoutz, Anna
AU - Sit, Wai-Yu
AU - Fei, Zhuping
AU - Du, Tian
AU - Wang, Xuhua
AU - McLachlan, Martyn A.
AU - Vourlias, George
AU - Patsalas, Panos A.
AU - Payne, David J.
AU - Heeney, Martin
AU - Anthopoulos, Thomas D.
N1 - KAUST Repository Item: Exported on 2023-01-09
Acknowledgements: N.W. and T.D.A. acknowledge financial support from the European Research Council (ERC) AMPRO (Grant No. 280221) and the Engineering and Physical Sciences Research Council (EPSRC) (Grant No. EP/L504786/1). N.W. and T.D.A are also grateful to Prof. Jenny Nelson for constructive discussions and to Prof. James R. Durrant for supplying the PCDTBT polymer. L.T. acknowledges support for the computational time granted from the Greek Research & Technology Network (GRNET) in the National HPC facility—ARIS—under project pr004034-STEM. D.J.P. acknowledges support from the Royal Society for his University Research Fellowship (Grant Nos. UF100105 and UF150693). D.J.P. and A.R. acknowledge support from the EPSRC (Grant Nos. EP/M013839/1 and EP/M028291/1).
PY - 2018/2/1
Y1 - 2018/2/1
N2 - The synthesis and characterization of copper (I) selenocyanate (CuSeCN) and its application as a solution-processable hole-transport layer (HTL) material in transistors, organic light-emitting diodes, and solar cells are reported. Density-functional theory calculations combined with X-ray photoelectron spectroscopy are used to elucidate the electronic band structure, density of states, and microstructure of CuSeCN. Solution-processed layers are found to be nanocrystalline and optically transparent (>94%), due to the large bandgap of ≥3.1 eV, with a valence band maximum located at −5.1 eV. Hole-transport analysis performed using field-effect measurements confirms the p-type character of CuSeCN yielding a hole mobility of 0.002 cm2 V−1 s−1. When CuSeCN is incorporated as the HTL material in organic light-emitting diodes and organic solar cells, the resulting devices exhibit comparable or improved performance to control devices based on commercially available poly(3,4-ethylenedioxythiophene):polystyrene sulfonate as the HTL. This is the first report on the semiconducting character of CuSeCN and it highlights the tremendous potential for further developments in the area of metal pseudohalides.
AB - The synthesis and characterization of copper (I) selenocyanate (CuSeCN) and its application as a solution-processable hole-transport layer (HTL) material in transistors, organic light-emitting diodes, and solar cells are reported. Density-functional theory calculations combined with X-ray photoelectron spectroscopy are used to elucidate the electronic band structure, density of states, and microstructure of CuSeCN. Solution-processed layers are found to be nanocrystalline and optically transparent (>94%), due to the large bandgap of ≥3.1 eV, with a valence band maximum located at −5.1 eV. Hole-transport analysis performed using field-effect measurements confirms the p-type character of CuSeCN yielding a hole mobility of 0.002 cm2 V−1 s−1. When CuSeCN is incorporated as the HTL material in organic light-emitting diodes and organic solar cells, the resulting devices exhibit comparable or improved performance to control devices based on commercially available poly(3,4-ethylenedioxythiophene):polystyrene sulfonate as the HTL. This is the first report on the semiconducting character of CuSeCN and it highlights the tremendous potential for further developments in the area of metal pseudohalides.
UR - http://hdl.handle.net/10754/627032
UR - http://onlinelibrary.wiley.com/doi/10.1002/adfm.201707319/full
UR - http://www.scopus.com/inward/record.url?scp=85041171816&partnerID=8YFLogxK
U2 - 10.1002/adfm.201707319
DO - 10.1002/adfm.201707319
M3 - Article
AN - SCOPUS:85041171816
SN - 1057-9257
VL - 28
SP - 1707319
JO - Advanced Materials for Optics and Electronics
JF - Advanced Materials for Optics and Electronics
IS - 14
ER -