Abstract
Lead-free organic metal halide scintillators with low-dimensional electronic structures have demonstrated great potential in X-ray detection and imaging due to their excellent optoelectronic properties. Herein, the zero-dimensional organic copper halide (18-crown-6)2Na2(H2O)3Cu4I6 (CNCI) which exhibits negligible self-absorption and near-unity green-light emission was successfully deployed into X-ray imaging scintillators with outstanding X-ray sensitivity and imaging resolution. In particular, we fabricated a CNCI/polymer composite scintillator with an ultrahigh light yield of ∼109,000 photons/MeV, representing one of the highest values reported so far for scintillation materials. In addition, an ultralow detection limit of 59.4 nGy/s was achieved, which is approximately 92 times lower than the dosage for a standard medical examination. Moreover, the spatial imaging resolution of the CNCI scintillator was further improved by using a silicon template due to the wave-guiding of light through CNCI-filled pores. The pixelated CNCI-silicon array scintillation screen displays an impressive spatial resolution of 24.8 line pairs per millimeter (lp/mm) compared to the resolution of 16.3 lp/mm for CNCI-polymer film screens, representing the highest resolutions reported so far for organometallic-based X-ray imaging screens. This design represents a new approach to fabricating high-performance X-ray imaging scintillators based on organic metal halides for applications in medical radiography and security screening.
Original language | English (US) |
---|---|
Pages (from-to) | 668-674 |
Number of pages | 7 |
Journal | ACS Central Science |
Volume | 9 |
Issue number | 4 |
DOIs | |
State | Published - Apr 26 2023 |
ASJC Scopus subject areas
- General Chemistry
- General Chemical Engineering