Corona Phase Molecular Recognition of the Interleukin-6 (IL-6) Family of Cytokines Using nIR Fluorescent Single-Walled Carbon Nanotubes

Xiaojia Jin, Michael A. Lee, Xun Gong, Volodymyr B. Koman, Daniel J. Lundberg, Song Wang, Naveed A. Bakh, Minkyung Park, Juyao Ivy Dong, Daichi Kozawa, Soo-Yeon Cho, Michael S Strano

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

The Interleukin-6 (IL-6) family of cytokines regulates inflammation and plays important roles in numerous biochemical pathways. Typically, cytokine levels are measured using enzyme-linked immunosorbent assay (ELISA) or western blot. However, these techniques usually require substantial processing time, cost, machinery, and specialist training. Understanding the fundamental molecular recognition mechanism of cytokines with synthetic substrates is key to developing new biomedical technologies such as assays, sensors, and therapeutics that overcome the above limitations. Herein, we use the corona phase molecular recognition (CoPhMoRe) approach to engineer new carbon nanotube constructs and study their binding to the inflammatory cytokines: IL-6, interleukin-11 (IL-11), ciliary neurotrophic factor (CNTF), and leukemia inhibitory factor (LIF). Library screening identified two polymer-based CoPhMoRe constructs consisting of single-walled carbon nanotubes complexed with p(AA68-rand-BA16-rand-CD16) polymer (MK2) or p(SS80-rand-BS20) polymer (P14) corona phases. The resulting dissociation constants (KD) were 8.38 ng/mL and 16.7 μg/mL, respectively, compared to that of the natural IL-6 receptor at ∼0.32 ng/mL. In addition, the MK2 constructs showed a nonmonotonic response function upon binding with IL-6. Comparative binding experiments suggest that both constructs appear to recognize the axially aligned α-helical structures present in the Interleukin-6 family. The findings from this study elucidate how nanoparticle interfaces, such as those produced by CoPhMoRe, can be designed to lock onto specific protein features. We find that the α-helical structure of the IL-6 family of cytokines can enable facile molecular recognition, opening the door to new types of label-free, low-cost sensing technologies.
Original languageEnglish (US)
JournalACS Applied Nano Materials
DOIs
StatePublished - May 26 2023
Externally publishedYes

Fingerprint

Dive into the research topics of 'Corona Phase Molecular Recognition of the Interleukin-6 (IL-6) Family of Cytokines Using nIR Fluorescent Single-Walled Carbon Nanotubes'. Together they form a unique fingerprint.

Cite this