TY - JOUR
T1 - Cost-effective hydrogen oxidation reaction catalysts for hydroxide exchange membrane fuel cells
AU - Xue, Yanrong
AU - Wang, Xingdong
AU - Zhang, Xiangqian
AU - Fang, Jinjie
AU - Xu, Zhiyuan
AU - Zhang, Yufeng
AU - Liu, Xuerui
AU - Liu, Mengyuan
AU - Zhu, Wei
AU - Zhuang, Zhongbin
N1 - Funding Information:
Received: September 30, 2020; Revised: October 31, 2020; Accepted: November 2, 2020; Published online: November 12, 2020. *Corresponding author. Email: [email protected]. Tel.: +86-10-64434780. The project was supported by the National Key Research and Development Program of China (2019YFA0210300) and the National Natural Science Foundation of China (21671014). 国家重点研发计划(2019YFA0210300)和国家自然科学基金(21671014)资助项目
Publisher Copyright:
© Editorial office of Acta Physico-Chimica Sinica.
PY - 2021
Y1 - 2021
N2 - Fuel cells are clean, efficient energy conversion devices that produce electricity from chemical energy stored within fuels. The development of fuel cells has significantly progressed over the past decades. Specifically, polymer electrolyte fuel cells, which are representative of proton exchange membrane fuel cells (PEMFCs), exhibit high efficiency, high power density, and quick start-up times. However, the high cost of PEMFCs, partially from the Pt-based catalysts they employ, hinders their diverse applicability. Hydroxide exchange membrane fuel cells (HEMFCs), which are also known as alkaline polymer electrolyte fuel cells (APEFCs), alkaline anion-exchange membrane fuel cells (AAEMFCs), anion exchange membrane fuel cells (AEMFCs), or alkaline membrane fuel cells (AMFCs), have attracted much attention because of their capability to use non-Pt electrocatalysts and inexpensive bipolar plates. The HEMFCs are structurally similar to PEMFCs but they use a polymer electrolyte that conducts hydroxide ions, thus providing an alkaline environment. However, the relatively sluggish kinetics of the hydrogen oxidation reaction (HOR) inhibit the practical application of HEMFCs. The anode catalyst loading needed for HEMFCs to achieve high cell performance is larger than that required for other fuel cells, which substantially increases the cost of HEMFCs. Therefore, low-cost, highly active, and stable HOR catalysts in the alkaline condition are greatly desired. Here, we review the recent achievements in developing such HOR catalysts. First, plausible HOR mechanisms are explored and HOR activity descriptors are summarized. The HOR processes are mainly controlled by the binding energy between hydrogen and the catalysts, but they may also be influenced by OH adsorption, interfacial water adsorption, and the potential of zero (free) charge. Next, experimental methods used to elevate HOR activities are introduced, followed by HOR catalysts reported in the literature, including Pt-, Ir-, Pd-, Ru-, and Ni-based catalysts, among others. HEMFC performances when employing various anode catalysts are then summarized, where HOR catalysts with platinum-group metals exhibited the highest HEMFC performance. Although the Ni-based HOR catalyst activity was higher than those of other non-precious metal-based catalysts, they showed unsatisfactory performance in HEMFCs. We further analyzed HEMFC performances while considering anode catalyst cost, where we found that this cost can be reduced by using recently developed, non-Pt HOR catalysts, especially Ru-based catalysts. In fact, an HEMFC using a Ru-based HOR catalyst showed an anode catalyst cost-based performance similar to that of PEMFCs, making the HEMFC promising for use in practical applications. Finally, we proposed routes for developing future HOR catalysts for HEMFCs.
AB - Fuel cells are clean, efficient energy conversion devices that produce electricity from chemical energy stored within fuels. The development of fuel cells has significantly progressed over the past decades. Specifically, polymer electrolyte fuel cells, which are representative of proton exchange membrane fuel cells (PEMFCs), exhibit high efficiency, high power density, and quick start-up times. However, the high cost of PEMFCs, partially from the Pt-based catalysts they employ, hinders their diverse applicability. Hydroxide exchange membrane fuel cells (HEMFCs), which are also known as alkaline polymer electrolyte fuel cells (APEFCs), alkaline anion-exchange membrane fuel cells (AAEMFCs), anion exchange membrane fuel cells (AEMFCs), or alkaline membrane fuel cells (AMFCs), have attracted much attention because of their capability to use non-Pt electrocatalysts and inexpensive bipolar plates. The HEMFCs are structurally similar to PEMFCs but they use a polymer electrolyte that conducts hydroxide ions, thus providing an alkaline environment. However, the relatively sluggish kinetics of the hydrogen oxidation reaction (HOR) inhibit the practical application of HEMFCs. The anode catalyst loading needed for HEMFCs to achieve high cell performance is larger than that required for other fuel cells, which substantially increases the cost of HEMFCs. Therefore, low-cost, highly active, and stable HOR catalysts in the alkaline condition are greatly desired. Here, we review the recent achievements in developing such HOR catalysts. First, plausible HOR mechanisms are explored and HOR activity descriptors are summarized. The HOR processes are mainly controlled by the binding energy between hydrogen and the catalysts, but they may also be influenced by OH adsorption, interfacial water adsorption, and the potential of zero (free) charge. Next, experimental methods used to elevate HOR activities are introduced, followed by HOR catalysts reported in the literature, including Pt-, Ir-, Pd-, Ru-, and Ni-based catalysts, among others. HEMFC performances when employing various anode catalysts are then summarized, where HOR catalysts with platinum-group metals exhibited the highest HEMFC performance. Although the Ni-based HOR catalyst activity was higher than those of other non-precious metal-based catalysts, they showed unsatisfactory performance in HEMFCs. We further analyzed HEMFC performances while considering anode catalyst cost, where we found that this cost can be reduced by using recently developed, non-Pt HOR catalysts, especially Ru-based catalysts. In fact, an HEMFC using a Ru-based HOR catalyst showed an anode catalyst cost-based performance similar to that of PEMFCs, making the HEMFC promising for use in practical applications. Finally, we proposed routes for developing future HOR catalysts for HEMFCs.
KW - Cost
KW - Electrocatalyst
KW - Hydrogen oxidation reaction
KW - Hydroxide exchange membrane fuel cell
KW - Platinum-group metal
UR - http://www.scopus.com/inward/record.url?scp=85114699073&partnerID=8YFLogxK
U2 - 10.3866/PKU.WHXB202009103
DO - 10.3866/PKU.WHXB202009103
M3 - Review article
AN - SCOPUS:85114699073
SN - 1000-6818
VL - 37
JO - Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica
JF - Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica
IS - 9
M1 - 2009103
ER -