Counterflow ignition and extinction of FACE gasoline fuels

Adamu Alfazazi, Gerald Mairinger, Hatem Selim, Kalyanasundaram Seshadri, Mani Sarathy

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


The demand for petroleum-derived gasoline in the transportation sector is on the rise. For better knowledge of gasoline combustion in practical combustion systems, this study presents experimental measurements and numerical prediction of autoignition temperatures and extinction limits of six FACE (fuels for advanced combustion engines) gasoline fuels in counterflow flames. Extinction limits were measured at atmospheric pressures while the experiments for autoignition temperatures were carried out at atmospheric and high pressures. For atmospheric pressure experiment, the fuel stream consists of the pre-vaporized fuel diluted with nitrogen, while a condensed fuel configuration is used for ignition experiment at higher chamber pressures. The oxidizer stream is pure air. Autoignition temperatures of the tested fuels are nearly the same at atmospheric pressure, while a huge difference is observed as the pressure is increased. Unlike the ignition temperatures at atmospheric pressures, minor difference exists in the extinction limits of the tested fuels. Simulations were carried out using a recently developed gasoline surrogate model. Both multi-component and n-heptane/isooctane mixtures were used as surrogates for the simulations. Overall, the n-heptane/isooctane surrogate mixtures are consistently more reactive as compared the multi-component surrogate mixtures. Transport weighted enthalpy and radical index analysis was used to explain the differences in extinction strain rates for the various fuels.
Original languageEnglish (US)
JournalProceedings of the Combustion Institute
StatePublished - Sep 11 2020


Dive into the research topics of 'Counterflow ignition and extinction of FACE gasoline fuels'. Together they form a unique fingerprint.

Cite this