TY - JOUR
T1 - Counterflow ignition and extinction of FACE gasoline fuels
AU - Alfazazi, Adamu
AU - Mairinger, Gerald
AU - Selim, Hatem
AU - Seshadri, Kalyanasundaram
AU - Sarathy, Mani
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This work was performed by the Clean Combustion Research Center with funding from King Abdullah University of Science and Technology (KAUST), University of California, San Diego and Saudi Aramco under the FUELCOM program. Research reported in this publication was also supported by competitive research funding from KAUST.
PY - 2020/9/11
Y1 - 2020/9/11
N2 - The demand for petroleum-derived gasoline in the transportation sector is on the rise. For better knowledge of gasoline combustion in practical combustion systems, this study presents experimental measurements and numerical prediction of autoignition temperatures and extinction limits of six FACE (fuels for advanced combustion engines) gasoline fuels in counterflow flames. Extinction limits were measured at atmospheric pressures while the experiments for autoignition temperatures were carried out at atmospheric and high pressures. For atmospheric pressure experiment, the fuel stream consists of the pre-vaporized fuel diluted with nitrogen, while a condensed fuel configuration is used for ignition experiment at higher chamber pressures. The oxidizer stream is pure air. Autoignition temperatures of the tested fuels are nearly the same at atmospheric pressure, while a huge difference is observed as the pressure is increased. Unlike the ignition temperatures at atmospheric pressures, minor difference exists in the extinction limits of the tested fuels. Simulations were carried out using a recently developed gasoline surrogate model. Both multi-component and n-heptane/isooctane mixtures were used as surrogates for the simulations. Overall, the n-heptane/isooctane surrogate mixtures are consistently more reactive as compared the multi-component surrogate mixtures. Transport weighted enthalpy and radical index analysis was used to explain the differences in extinction strain rates for the various fuels.
AB - The demand for petroleum-derived gasoline in the transportation sector is on the rise. For better knowledge of gasoline combustion in practical combustion systems, this study presents experimental measurements and numerical prediction of autoignition temperatures and extinction limits of six FACE (fuels for advanced combustion engines) gasoline fuels in counterflow flames. Extinction limits were measured at atmospheric pressures while the experiments for autoignition temperatures were carried out at atmospheric and high pressures. For atmospheric pressure experiment, the fuel stream consists of the pre-vaporized fuel diluted with nitrogen, while a condensed fuel configuration is used for ignition experiment at higher chamber pressures. The oxidizer stream is pure air. Autoignition temperatures of the tested fuels are nearly the same at atmospheric pressure, while a huge difference is observed as the pressure is increased. Unlike the ignition temperatures at atmospheric pressures, minor difference exists in the extinction limits of the tested fuels. Simulations were carried out using a recently developed gasoline surrogate model. Both multi-component and n-heptane/isooctane mixtures were used as surrogates for the simulations. Overall, the n-heptane/isooctane surrogate mixtures are consistently more reactive as compared the multi-component surrogate mixtures. Transport weighted enthalpy and radical index analysis was used to explain the differences in extinction strain rates for the various fuels.
UR - http://hdl.handle.net/10754/665084
UR - https://linkinghub.elsevier.com/retrieve/pii/S1540748920304582
U2 - 10.1016/j.proci.2020.06.364
DO - 10.1016/j.proci.2020.06.364
M3 - Article
SN - 1540-7489
JO - Proceedings of the Combustion Institute
JF - Proceedings of the Combustion Institute
ER -