Coupling multipoint flux mixed finite element methodswith continuous Galerkin methods for poroelasticity

Mary Wheeler, Guangri Xue, Ivan Yotov

Research output: Contribution to journalArticlepeer-review

46 Scopus citations

Abstract

We study the numerical approximation on irregular domains with general grids of the system of poroelasticity, which describes fluid flow in deformable porous media. The flow equation is discretized by a multipoint flux mixed finite element method and the displacements are approximated by a continuous Galerkin finite element method. First-order convergence in space and time is established in appropriate norms for the pressure, velocity, and displacement. Numerical results are presented that illustrate the behavior of the method. © Springer Science+Business Media Dordrecht 2013.
Original languageEnglish (US)
Pages (from-to)57-75
Number of pages19
JournalComputational Geosciences
Volume18
Issue number1
DOIs
StatePublished - Nov 16 2013
Externally publishedYes

Fingerprint

Dive into the research topics of 'Coupling multipoint flux mixed finite element methodswith continuous Galerkin methods for poroelasticity'. Together they form a unique fingerprint.

Cite this