TY - GEN
T1 - Coverage maximization for a poisson field of drone cells
AU - Azari, Mohammad Mahdi
AU - Murillo, Yuri
AU - Amin, Osama
AU - Rosas, Fernando
AU - Alouini, Mohamed Slim
AU - Pollin, Sofie
N1 - Publisher Copyright:
© 2017 IEEE.
PY - 2017/7/2
Y1 - 2017/7/2
N2 - The use of drone base stations to provide wireless connectivity for ground terminals is becoming a promising part of future technologies. The design of such aerial networks is however different compared to cellular 2D networks, as antennas from the drones are looking down, and the channel model becomes height-dependent. In this paper, we study the effect of antenna patterns and height-dependent shadowing. We consider a random network topology to capture the effect of dynamic changes of the flying base stations. First we characterize the aggregate interference imposed by the co-channel neighboring drones. Then we derive the link coverage probability between a ground user and its associated drone base station. The result is used to obtain the optimum system parameters in terms of drones antenna beamwidth, density and altitude. We also derive the average LoS probability of the associated drone and show that it is a good approximation and simplification of the coverage probability in low altitudes up to 500 m according to the required signal-to-interference-plus-noise ratio (SINR).
AB - The use of drone base stations to provide wireless connectivity for ground terminals is becoming a promising part of future technologies. The design of such aerial networks is however different compared to cellular 2D networks, as antennas from the drones are looking down, and the channel model becomes height-dependent. In this paper, we study the effect of antenna patterns and height-dependent shadowing. We consider a random network topology to capture the effect of dynamic changes of the flying base stations. First we characterize the aggregate interference imposed by the co-channel neighboring drones. Then we derive the link coverage probability between a ground user and its associated drone base station. The result is used to obtain the optimum system parameters in terms of drones antenna beamwidth, density and altitude. We also derive the average LoS probability of the associated drone and show that it is a good approximation and simplification of the coverage probability in low altitudes up to 500 m according to the required signal-to-interference-plus-noise ratio (SINR).
UR - http://www.scopus.com/inward/record.url?scp=85045243879&partnerID=8YFLogxK
U2 - 10.1109/PIMRC.2017.8292753
DO - 10.1109/PIMRC.2017.8292753
M3 - Conference contribution
AN - SCOPUS:85045243879
T3 - IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC
SP - 1
EP - 6
BT - 2017 IEEE International Symposium on Personal, Indoor and Mobile Radio Communications
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 28th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2017
Y2 - 8 October 2017 through 13 October 2017
ER -