Decentralized degree regularization for multi-agent networks

A. Yasin Yazicioǧlu, Magnus Egerstedt, Jeff S. Shamma

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations


Networked multi-agent systems are widely modeled as graphs where the agents are represented as nodes and edges exist between the agents that interact directly. In this setting, the degree of a node is the number of edges incident to it. For such systems, degree regularity (uniformity of degree across the nodes) typically provides desirable properties such as robustness and fast mixing time. As such, a key task is to achieve degree regularization in a decentralized manner. In this paper, we present a locally applicable rule that achieves this task. For any connected initial graph, the proposed reconfiguration rule preserves the graph connectivity and the total number of edges in the system while minimizing the difference between the maximum and the minimum node degrees.

Original languageEnglish (US)
Title of host publication2013 IEEE 52nd Annual Conference on Decision and Control, CDC 2013
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages6
ISBN (Print)9781467357173
StatePublished - 2013
Externally publishedYes
Event52nd IEEE Conference on Decision and Control, CDC 2013 - Florence, Italy
Duration: Dec 10 2013Dec 13 2013

Publication series

NameProceedings of the IEEE Conference on Decision and Control
ISSN (Print)0743-1546
ISSN (Electronic)2576-2370


Other52nd IEEE Conference on Decision and Control, CDC 2013

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Modeling and Simulation
  • Control and Optimization


Dive into the research topics of 'Decentralized degree regularization for multi-agent networks'. Together they form a unique fingerprint.

Cite this