Declining nutrient availability and metal pollution in the Red Sea

Chunzhi Cai*, Antonio Delgado Huertas, Susana Agusti

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


Reconstructing sediment accumulation rates reveals historical environmental shifts. We analyzed 15 element concentrations and accumulation rates in two Red Sea sediment cores over 500 years. Post-1870s, the South Red Sea experienced a significant drop in element accumulation rates, with a noticeable decline in nutrients like magnesium (−8.52%), organic carbon (−14.9%), nitrogen (−14.0%), phosphorus (−16.4%), sulfur (−17.2%), and calcium (−17.8%). This suggests a potential reduction in nutrient inflow from the Indian Ocean, possibly due to warming-induced ocean stratification. Conversely, the North Red Sea saw an increase in all element accumulation rates after the 1870s, highlighting a rise in trace elements such as iron (4.56%), cadmium (8.69%), vanadium (12.6%), zinc (13.8%), copper (14.4%), chromium (17.6%), and nickel (19.5%), indicative of increased anthropogenic coastal activities. We introduce the term “Cai-Agusti Marine Crisis Conflux” to encapsulate the escalating thermal stress, nutrient depletion, and elemental pollution in the Red Sea, underscoring potential risks to its ecosystems and global implications.

Original languageEnglish (US)
Article number424
JournalCommunications Earth and Environment
Issue number1
StatePublished - Dec 2023

ASJC Scopus subject areas

  • General Environmental Science
  • General Earth and Planetary Sciences


Dive into the research topics of 'Declining nutrient availability and metal pollution in the Red Sea'. Together they form a unique fingerprint.

Cite this