TY - GEN
T1 - Decoupled Mixup for Out-of-Distribution Visual Recognition
AU - Liu, Haozhe
AU - Zhang, Wentian
AU - Xie, Jinheng
AU - Wu, Haoqian
AU - Li, Bing
AU - Zhang, Ziqi
AU - Li, Yuexiang
AU - Huang, Yawen
AU - Ghanem, Bernard
AU - Zheng, Yefeng
N1 - Funding Information:
Acknowledgements. We would like to thank the efforts of the NICO Challenge officials, who are committed to maintaining the fairness and openness of the competition. We also could not have undertaken this paper without efforts of every authors. This work was supported in part by the Key-Area Research and Development Program of Guangdong Province, China (No. 2018B010111001), National Key R&D Program of China (2018YFC2000702), in part by the Scientific and Technical Innovation 2030-“New Generation Artificial Intelligence” Project (No. 2020AAA0104100) and in part by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research through the Visual Computing Center (VCC) funding.
Funding Information:
We would like to thank the efforts of the NICO Challenge officials, who are committed to maintaining the fairness and openness of the competition. We also could not have undertaken this paper without efforts of every authors. This work was supported in part by the Key-Area Research and Development Program of Guangdong Province, China (No. 2018B010111001), National Key R&D Program of China (2018YFC2000702), in part by the Scientific and Technical Innovation 2030“New Generation Artificial Intelligence” Project (No. 2020AAA0104100) and in part by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research through the Visual Computing Center (VCC) funding.
Publisher Copyright:
© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
PY - 2023
Y1 - 2023
N2 - Convolutional neural networks (CNN) have demonstrated remarkable performance, when the training and testing data are from the same distribution. However, such trained CNN models often largely degrade on testing data which is unseen and Out-Of-the-Distribution (OOD). To address this issue, we propose a novel “Decoupled-Mixup" method to train CNN models for OOD visual recognition. Different from previous work combining pairs of images homogeneously, our method decouples each image into discriminative and noise-prone regions, and then heterogeneously combine these regions of image pairs to train CNN models. Since the observation is that noise-prone regions such as textural and clutter background are adverse to the generalization ability of CNN models during training, we enhance features from discriminative regions and suppress noise-prone ones when combining an image pair. To further improves the generalization ability of trained models, we propose to disentangle discriminative and noise-prone regions in frequency-based and context-based fashions. Experiment results show the high generalization performance of our method on testing data that are composed of unseen contexts, where our method achieves 85.76% top-1 accuracy in Track-1 and 79.92% in Track-2 in NICO Challenge. The source code is available at https://github.com/HaozheLiu-ST/NICOChallenge-OOD-Classification.
AB - Convolutional neural networks (CNN) have demonstrated remarkable performance, when the training and testing data are from the same distribution. However, such trained CNN models often largely degrade on testing data which is unseen and Out-Of-the-Distribution (OOD). To address this issue, we propose a novel “Decoupled-Mixup" method to train CNN models for OOD visual recognition. Different from previous work combining pairs of images homogeneously, our method decouples each image into discriminative and noise-prone regions, and then heterogeneously combine these regions of image pairs to train CNN models. Since the observation is that noise-prone regions such as textural and clutter background are adverse to the generalization ability of CNN models during training, we enhance features from discriminative regions and suppress noise-prone ones when combining an image pair. To further improves the generalization ability of trained models, we propose to disentangle discriminative and noise-prone regions in frequency-based and context-based fashions. Experiment results show the high generalization performance of our method on testing data that are composed of unseen contexts, where our method achieves 85.76% top-1 accuracy in Track-1 and 79.92% in Track-2 in NICO Challenge. The source code is available at https://github.com/HaozheLiu-ST/NICOChallenge-OOD-Classification.
UR - http://www.scopus.com/inward/record.url?scp=85150325149&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-25075-0_30
DO - 10.1007/978-3-031-25075-0_30
M3 - Conference contribution
AN - SCOPUS:85150325149
SN - 9783031250743
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 451
EP - 464
BT - Computer Vision – ECCV 2022 Workshops, Proceedings
A2 - Karlinsky, Leonid
A2 - Michaeli, Tomer
A2 - Nishino, Ko
PB - Springer Science and Business Media Deutschland GmbH
T2 - 17th European Conference on Computer Vision, ECCV 2022
Y2 - 23 October 2022 through 27 October 2022
ER -