TY - JOUR
T1 - Deep learning approach for sustainable WWTP operation: A case study on data-driven influent conditions monitoring
AU - Dairi, Abdelkader
AU - Cheng, Tuoyuan
AU - Harrou, Fouzi
AU - Sun, Ying
AU - Leiknes, TorOve
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): OSR-2019-CRG7-3800
Acknowledgements: This publication is based upon work supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR)under Award No: OSR-2019-CRG7-3800.
PY - 2019/6/30
Y1 - 2019/6/30
N2 - Wastewater treatment plants (WWTPs) are sustainable solutions to water scarcity. As initial conditions offered to WWTPs, influent conditions (ICs) affect treatment units states, ongoing processes mechanisms, and product qualities. Anomalies in ICs, often raised by abnormal events, need to be monitored and detected promptly to improve system resilience and provide smart environments. This paper proposed and verified data-driven anomaly detection approaches based on deep learning methods and clustering algorithms. Combining both the ability to capture temporal auto-correlation features among multivariate time series from recurrent neural networks (RNNs), and the function to delineate complex distributions from restricted Boltzmann machines (RBM), RNN-RBM models were employed and connected with various classifiers for anomaly detection. The effectiveness of RNN based, RBM based, RNN-RBM based, or standalone individual detectors, including expectation maximization clustering, K-means clustering, mean-shift clustering, one-class support vector machine (OCSVM), spectral clustering, and agglomerative clustering algorithms were evaluated by importing seven years ICs data from a coastal municipal WWTP where more than 150 abnormal events occurred. Results demonstrated that RNN-RBM-based OCSVM approach outperformed all other scenarios with an area under the curve value up to 0.98, which validated the superiority in feature extraction by RNN-RBM, and the robustness in multivariate nonlinear kernels by OCSVM. The model was flexible for not requiring assumptions on data distribution, and could be shared and transferred among environmental data scientists.
AB - Wastewater treatment plants (WWTPs) are sustainable solutions to water scarcity. As initial conditions offered to WWTPs, influent conditions (ICs) affect treatment units states, ongoing processes mechanisms, and product qualities. Anomalies in ICs, often raised by abnormal events, need to be monitored and detected promptly to improve system resilience and provide smart environments. This paper proposed and verified data-driven anomaly detection approaches based on deep learning methods and clustering algorithms. Combining both the ability to capture temporal auto-correlation features among multivariate time series from recurrent neural networks (RNNs), and the function to delineate complex distributions from restricted Boltzmann machines (RBM), RNN-RBM models were employed and connected with various classifiers for anomaly detection. The effectiveness of RNN based, RBM based, RNN-RBM based, or standalone individual detectors, including expectation maximization clustering, K-means clustering, mean-shift clustering, one-class support vector machine (OCSVM), spectral clustering, and agglomerative clustering algorithms were evaluated by importing seven years ICs data from a coastal municipal WWTP where more than 150 abnormal events occurred. Results demonstrated that RNN-RBM-based OCSVM approach outperformed all other scenarios with an area under the curve value up to 0.98, which validated the superiority in feature extraction by RNN-RBM, and the robustness in multivariate nonlinear kernels by OCSVM. The model was flexible for not requiring assumptions on data distribution, and could be shared and transferred among environmental data scientists.
UR - http://hdl.handle.net/10754/656206
UR - https://linkinghub.elsevier.com/retrieve/pii/S2210670719304160
UR - http://www.scopus.com/inward/record.url?scp=85068923171&partnerID=8YFLogxK
U2 - 10.1016/j.scs.2019.101670
DO - 10.1016/j.scs.2019.101670
M3 - Article
SN - 2210-6707
VL - 50
SP - 101670
JO - Sustainable Cities and Society
JF - Sustainable Cities and Society
ER -