TY - JOUR
T1 - Deep learning in bioinformatics: Introduction, application, and perspective in the big data era
AU - Li, Yu
AU - Huang, Chao
AU - Ding, Lizhong
AU - Li, Zhongxiao
AU - Pan, Yijie
AU - Gao, Xin
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): FCC/1/1976-18-01, FCC/1/1976-23-01, FCC/1/1976-25-01, FCC/1/1976-26-01, URF/1/3007-01-01, URF/1/3450-01-01
Acknowledgements: The research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST), under award number FCC/1/1976-18-01, FCC/1/1976-23-01, FCC/1/1976-25-01, FCC/1/1976-26-01, URF/1/3007-01-01, and URF/1/3450-01-01.
PY - 2019/4/22
Y1 - 2019/4/22
N2 - Deep learning, which is especially formidable in handling big data, has achieved great success in various fields, including bioinformatics. With the advances of the big data era in biology, it is foreseeable that deep learning will become increasingly important in the field and will be incorporated in vast majorities of analysis pipelines. In this review, we provide both the exoteric introduction of deep learning, and concrete examples and implementations of its representative applications in bioinformatics. We start from the recent achievements of deep learning in the bioinformatics field, pointing out the problems which are suitable to use deep learning. After that, we introduce deep learning in an easy-to-understand fashion, from shallow neural networks to legendary convolutional neural networks, legendary recurrent neural networks, graph neural networks, generative adversarial networks, variational autoencoder, and the most recent state-of-the-art architectures. After that, we provide eight examples, covering five bioinformatics research directions and all the four kinds of data type, with the implementation written in Tensorflow and Keras. Finally, we discuss the common issues, such as overfitting and interpretability, that users will encounter when adopting deep learning methods and provide corresponding suggestions. The implementations are freely available at https://github.com/lykaust15/Deep_learning_examples.
AB - Deep learning, which is especially formidable in handling big data, has achieved great success in various fields, including bioinformatics. With the advances of the big data era in biology, it is foreseeable that deep learning will become increasingly important in the field and will be incorporated in vast majorities of analysis pipelines. In this review, we provide both the exoteric introduction of deep learning, and concrete examples and implementations of its representative applications in bioinformatics. We start from the recent achievements of deep learning in the bioinformatics field, pointing out the problems which are suitable to use deep learning. After that, we introduce deep learning in an easy-to-understand fashion, from shallow neural networks to legendary convolutional neural networks, legendary recurrent neural networks, graph neural networks, generative adversarial networks, variational autoencoder, and the most recent state-of-the-art architectures. After that, we provide eight examples, covering five bioinformatics research directions and all the four kinds of data type, with the implementation written in Tensorflow and Keras. Finally, we discuss the common issues, such as overfitting and interpretability, that users will encounter when adopting deep learning methods and provide corresponding suggestions. The implementations are freely available at https://github.com/lykaust15/Deep_learning_examples.
UR - http://hdl.handle.net/10754/632515
UR - https://www.sciencedirect.com/science/article/pii/S1046202318303256
UR - http://www.scopus.com/inward/record.url?scp=85064603332&partnerID=8YFLogxK
U2 - 10.1016/j.ymeth.2019.04.008
DO - 10.1016/j.ymeth.2019.04.008
M3 - Article
C2 - 31022451
SN - 1046-2023
VL - 166
SP - 4
EP - 21
JO - Methods
JF - Methods
ER -