TY - GEN
T1 - Deep neural networks segment neuronal membranes in electron microscopy images
AU - Cireşan, Dan C.
AU - Giusti, Alessandro
AU - Gambardella, Luca M.
AU - Schmidhuber, Jürgen
N1 - Generated from Scopus record by KAUST IRTS on 2022-09-14
PY - 2012/12/1
Y1 - 2012/12/1
N2 - We address a central problem of neuroanatomy, namely, the automatic segmentation of neuronal structures depicted in stacks of electron microscopy (EM) images. This is necessary to efficiently map 3D brain structure and connectivity. To segment biological neuron membranes, we use a special type of deep artificial neural network as a pixel classifier. The label of each pixel (membrane or nonmembrane) is predicted from raw pixel values in a square window centered on it. The input layer maps each window pixel to a neuron. It is followed by a succession of convolutional and max-pooling layers which preserve 2D information and extract features with increasing levels of abstraction. The output layer produces a calibrated probability for each class. The classifier is trained by plain gradient descent on a 512 × 512 × 30 stack with known ground truth, and tested on a stack of the same size (ground truth unknown to the authors) by the organizers of the ISBI 2012 EM Segmentation Challenge. Even without problem-specific postprocessing, our approach outperforms competing techniques by a large margin in all three considered metrics, i.e. rand error, warping error and pixel error. For pixel error, our approach is the only one outperforming a second human observer.
AB - We address a central problem of neuroanatomy, namely, the automatic segmentation of neuronal structures depicted in stacks of electron microscopy (EM) images. This is necessary to efficiently map 3D brain structure and connectivity. To segment biological neuron membranes, we use a special type of deep artificial neural network as a pixel classifier. The label of each pixel (membrane or nonmembrane) is predicted from raw pixel values in a square window centered on it. The input layer maps each window pixel to a neuron. It is followed by a succession of convolutional and max-pooling layers which preserve 2D information and extract features with increasing levels of abstraction. The output layer produces a calibrated probability for each class. The classifier is trained by plain gradient descent on a 512 × 512 × 30 stack with known ground truth, and tested on a stack of the same size (ground truth unknown to the authors) by the organizers of the ISBI 2012 EM Segmentation Challenge. Even without problem-specific postprocessing, our approach outperforms competing techniques by a large margin in all three considered metrics, i.e. rand error, warping error and pixel error. For pixel error, our approach is the only one outperforming a second human observer.
UR - http://www.scopus.com/inward/record.url?scp=84877789057&partnerID=8YFLogxK
M3 - Conference contribution
SN - 9781627480031
SP - 2843
EP - 2851
BT - Advances in Neural Information Processing Systems
ER -