TY - JOUR
T1 - DeepGCNs: Making GCNs Go as Deep as CNNs
AU - Li, Guohao
AU - Mueller, Matthias
AU - Qian, Guocheng
AU - Perez, Itzel Carolina Delgadillo
AU - Abualshour, Abdulellah
AU - Thabet, Ali Kassem
AU - Ghanem, Bernard
N1 - KAUST Repository Item: Exported on 2021-04-21
Acknowledgements: The authors thank Adel Bibi and Hani Itani for their help with the project. This work was supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research through the Visual Computing Center (VCC) funding.
PY - 2021
Y1 - 2021
N2 - Convolutional Neural Networks have been very successful at solving a variety of computer vision tasks such as object classification and detection, semantic segmentation, activity understanding, to name just a few. One key enabling factor for their great performance has been the ability to train very deep networks. Despite their huge success in many tasks, CNNs do not work well with non-Euclidean data, which is prevalent in many real-world applications. Graph Convolutional Networks offer an alternative that allows for non-Eucledian data input to a neural network. While GCNs already achieve encouraging results, they are currently limited to architectures with a relatively small number of layers, primarily due to vanishing gradients during training. This work transfers concepts such as residual/dense connections and dilated convolutions from CNNs to GCNs in order to successfully train very deep GCNs. We show the benefit of using deep GCNs experimentally across various datasets and tasks. Specifically, we achieve promising performance in part segmentation and semantic segmentation on point clouds and in node classification of protein functions across biological protein-protein-interaction graphs. We believe that the insights in this work will open avenues for future research on GCNs and their application to further tasks not explored in this paper.
AB - Convolutional Neural Networks have been very successful at solving a variety of computer vision tasks such as object classification and detection, semantic segmentation, activity understanding, to name just a few. One key enabling factor for their great performance has been the ability to train very deep networks. Despite their huge success in many tasks, CNNs do not work well with non-Euclidean data, which is prevalent in many real-world applications. Graph Convolutional Networks offer an alternative that allows for non-Eucledian data input to a neural network. While GCNs already achieve encouraging results, they are currently limited to architectures with a relatively small number of layers, primarily due to vanishing gradients during training. This work transfers concepts such as residual/dense connections and dilated convolutions from CNNs to GCNs in order to successfully train very deep GCNs. We show the benefit of using deep GCNs experimentally across various datasets and tasks. Specifically, we achieve promising performance in part segmentation and semantic segmentation on point clouds and in node classification of protein functions across biological protein-protein-interaction graphs. We believe that the insights in this work will open avenues for future research on GCNs and their application to further tasks not explored in this paper.
UR - http://hdl.handle.net/10754/660654
UR - https://ieeexplore.ieee.org/document/9408381/
U2 - 10.1109/TPAMI.2021.3074057
DO - 10.1109/TPAMI.2021.3074057
M3 - Article
C2 - 33872143
SN - 1939-3539
SP - 1
EP - 1
JO - IEEE Transactions on Pattern Analysis and Machine Intelligence
JF - IEEE Transactions on Pattern Analysis and Machine Intelligence
ER -