DeepGCNs: Making GCNs Go as Deep as CNNs

Guohao Li, Matthias Mueller, Guocheng Qian, Itzel Carolina Delgadillo Perez, Abdulellah Abualshour, Ali Kassem Thabet, Bernard Ghanem

Research output: Contribution to journalArticlepeer-review

65 Scopus citations

Abstract

Convolutional Neural Networks have been very successful at solving a variety of computer vision tasks such as object classification and detection, semantic segmentation, activity understanding, to name just a few. One key enabling factor for their great performance has been the ability to train very deep networks. Despite their huge success in many tasks, CNNs do not work well with non-Euclidean data, which is prevalent in many real-world applications. Graph Convolutional Networks offer an alternative that allows for non-Eucledian data input to a neural network. While GCNs already achieve encouraging results, they are currently limited to architectures with a relatively small number of layers, primarily due to vanishing gradients during training. This work transfers concepts such as residual/dense connections and dilated convolutions from CNNs to GCNs in order to successfully train very deep GCNs. We show the benefit of using deep GCNs experimentally across various datasets and tasks. Specifically, we achieve promising performance in part segmentation and semantic segmentation on point clouds and in node classification of protein functions across biological protein-protein-interaction graphs. We believe that the insights in this work will open avenues for future research on GCNs and their application to further tasks not explored in this paper.
Original languageEnglish (US)
Pages (from-to)1-1
Number of pages1
JournalIEEE Transactions on Pattern Analysis and Machine Intelligence
DOIs
StatePublished - 2021

Fingerprint

Dive into the research topics of 'DeepGCNs: Making GCNs Go as Deep as CNNs'. Together they form a unique fingerprint.

Cite this