Deflating link buffers in a wireless mesh network

Kamran Jamshaid, Basem Shihada, Ahmad Showail, Philip Levis

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

We analyze the problem of buffer sizing for backlogged TCP flows in 802.11-based wireless mesh networks. Our objective is to maintain high network utilization while providing low queueing delays. Unlike wired networks where a single link buffer feeds a bottleneck link, the radio spectral resource in a mesh network is shared among a set of contending mesh routers. We account for this by formulating the buffer size problem as sizing a collective buffer distributed over a set of interfering nodes. In this paper we propose mechanisms for sizing and distributing this collective buffer among the mesh nodes constituting the network bottleneck. Our mechanism factors in the network topology and wireless link rates, improving on pre-set buffer allocations that cannot optimally work across the range of configurations achievable with 802.11 radios. We evaluate our mechanisms using simulations as well as experiments on a testbed. Our results show that we can reduce the RTT of a flow by 6× or more, at the cost of less than 10% drop in end-to-end flow throughput.
Original languageEnglish (US)
Pages (from-to)266-280
Number of pages15
JournalAd Hoc Networks
Volume16
DOIs
StatePublished - May 2014

ASJC Scopus subject areas

  • Hardware and Architecture
  • Software
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Deflating link buffers in a wireless mesh network'. Together they form a unique fingerprint.

Cite this