TY - JOUR
T1 - Degradation kinetics of a potent antifouling agent, butenolide, under various environmental conditions
AU - Chen, Lianguo
AU - Xu, Ying
AU - Wang, Wenxiong
AU - Qian, Pei-Yuan
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): SA-C0040/UK-C0016
Acknowledgements: This study was supported by Grants from China Mineral Resources Research and Development Association (COMRRDA12SC01) and from the Research Grant Council of HKSAR government (662413), and the King Abdullah University of Science and Technology (SA-C0040/UK-C0016) and the State Key Laboratory in Marine Pollution, City University of Hong Kong.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2015/1
Y1 - 2015/1
N2 - © 2014 Elsevier Ltd. Here, we investigated the degradation kinetics of butenolide, a promising antifouling compound, under various environmental conditions. The active ingredient of the commercial antifoulant SeaNine 211, 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT), was used as positive control. The results showed that the degradation rate increased with increasing temperature. Half-lives of butenolide at 4. °C, 25. °C and 40. °C were. >64. d, 30.5. d and 3.9. d, respectively. Similar half-lives were recorded for DCOIT: >64. d at 4. °C, 27.9. d at 25. °C and 4.5. d at 40. °C. Exposure to sunlight accelerated the degradation of both butenolide and DCOIT. The photolysis half-lives of butenolide and DCOIT were 5.7. d and 6.8. d, respectively, compared with 9.7. d and 14.4. d for the dark control. Biodegradation led to the fastest rate of butenolide removal from natural seawater, with a half-life of 0.5. d, while no obvious degradation was observed for DCOIT after incubation for 4. d. The biodegradative ability of natural seawater for butenolide was attributed mainly to marine bacteria. During the degradation of butenolide and DCOIT, a gradual decrease in antifouling activity was observed, as indicated by the increased settlement percentage of cypris larvae from barnacle Balanus amphitrite. Besides, increased cell growth of marine diatom Skeletonema costatum demonstrated that the toxicity of seawater decreased gradually without generation of more toxic by-products. Overall, rapid degradation of butenolide in natural seawater supported its claim as a promising candidate for commercial antifouling industry.
AB - © 2014 Elsevier Ltd. Here, we investigated the degradation kinetics of butenolide, a promising antifouling compound, under various environmental conditions. The active ingredient of the commercial antifoulant SeaNine 211, 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT), was used as positive control. The results showed that the degradation rate increased with increasing temperature. Half-lives of butenolide at 4. °C, 25. °C and 40. °C were. >64. d, 30.5. d and 3.9. d, respectively. Similar half-lives were recorded for DCOIT: >64. d at 4. °C, 27.9. d at 25. °C and 4.5. d at 40. °C. Exposure to sunlight accelerated the degradation of both butenolide and DCOIT. The photolysis half-lives of butenolide and DCOIT were 5.7. d and 6.8. d, respectively, compared with 9.7. d and 14.4. d for the dark control. Biodegradation led to the fastest rate of butenolide removal from natural seawater, with a half-life of 0.5. d, while no obvious degradation was observed for DCOIT after incubation for 4. d. The biodegradative ability of natural seawater for butenolide was attributed mainly to marine bacteria. During the degradation of butenolide and DCOIT, a gradual decrease in antifouling activity was observed, as indicated by the increased settlement percentage of cypris larvae from barnacle Balanus amphitrite. Besides, increased cell growth of marine diatom Skeletonema costatum demonstrated that the toxicity of seawater decreased gradually without generation of more toxic by-products. Overall, rapid degradation of butenolide in natural seawater supported its claim as a promising candidate for commercial antifouling industry.
UR - http://hdl.handle.net/10754/597924
UR - https://linkinghub.elsevier.com/retrieve/pii/S004565351401131X
UR - http://www.scopus.com/inward/record.url?scp=84919723437&partnerID=8YFLogxK
U2 - 10.1016/j.chemosphere.2014.09.056
DO - 10.1016/j.chemosphere.2014.09.056
M3 - Article
C2 - 25460745
SN - 0045-6535
VL - 119
SP - 1075
EP - 1083
JO - Chemosphere
JF - Chemosphere
ER -