TY - JOUR
T1 - Degradation of carbonyl hydroperoxides in the atmosphere and in combustion
AU - Xing, Lili
AU - Bao, Junwei Lucas
AU - Wang, Zhandong
AU - Zhang, Feng
AU - Truhlar, Donald G.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This work was supported in part by the U. S. Department of Energy, Office of Basic Energy Sciences, under Award Number DE-SC0015997, by National Key Research and Development Program of China (No. 2016YFC0202600), by National Natural Science Foundation of China (No. 91541112), and by the China Scholarship Fund. J. L. Bao acknowledges the financial support from doctor dissertation fellowship (DDF) provided by University of Minnesota.
PY - 2017/10/27
Y1 - 2017/10/27
N2 - Oxygenates with carbonyl and hydroperoxy functional groups are important intermediates that are generated during the autooxidation of organic compounds in the atmosphere and during the autoignition of transport fuels. In the troposphere, the degradation of carbonyl hydroperoxides leads to low-vapor-pressure polyfunctional species that be taken into in cloud and fog droplets or to the formation of secondary organic aerosols (SOAs). In combustion, the fate of carbonyl hydroperoxides is important for the performance of advanced combustion engines, especially for autoignition. A key fate of the carbonyl hydroperoxides is reac-tion with OH radicals, for which kinetics data are experimentally unavailable. Here, we study 4-hydroperoxy-2-pentanone (CH3C(=O)CH2CH(OOH)CH3) as a model compound to clarify the kinetics of OH reactions with carbonyl hydroperoxides, in par-ticular H-atom abstraction and OH addition reactions. With a combination of electronic structure calculations, we determine previ-ously missing thermochemical data, and with multipath variational transition state theory (MP-VTST), a multidimensional tunnel-ing (MT) approximation, multiple-structure anharmonicity, and torsional potential anharmonicity we obtained much more accurate rate constants than the ones that can computed by conventional single-structure harmonic transition state theory (TST) and than the empirically estimated rate constants that are currently used in atmospheric and combustion modeling. The roles of various factors in determining the rates are elucidated. The pressure-dependent rate constants for the addition reaction are computed using system-specific quantum RRK theory. The calculated temperature range is 298-2400 K, and the pressure range is 0.01–100 atm. The accu-rate thermodynamic and kinetics data determined in this work are indispensable in the global modeling of SOAs in atmospheric science and in the detailed understanding and prediction of ignition properties of hydrocarbons and alternative fuels.
AB - Oxygenates with carbonyl and hydroperoxy functional groups are important intermediates that are generated during the autooxidation of organic compounds in the atmosphere and during the autoignition of transport fuels. In the troposphere, the degradation of carbonyl hydroperoxides leads to low-vapor-pressure polyfunctional species that be taken into in cloud and fog droplets or to the formation of secondary organic aerosols (SOAs). In combustion, the fate of carbonyl hydroperoxides is important for the performance of advanced combustion engines, especially for autoignition. A key fate of the carbonyl hydroperoxides is reac-tion with OH radicals, for which kinetics data are experimentally unavailable. Here, we study 4-hydroperoxy-2-pentanone (CH3C(=O)CH2CH(OOH)CH3) as a model compound to clarify the kinetics of OH reactions with carbonyl hydroperoxides, in par-ticular H-atom abstraction and OH addition reactions. With a combination of electronic structure calculations, we determine previ-ously missing thermochemical data, and with multipath variational transition state theory (MP-VTST), a multidimensional tunnel-ing (MT) approximation, multiple-structure anharmonicity, and torsional potential anharmonicity we obtained much more accurate rate constants than the ones that can computed by conventional single-structure harmonic transition state theory (TST) and than the empirically estimated rate constants that are currently used in atmospheric and combustion modeling. The roles of various factors in determining the rates are elucidated. The pressure-dependent rate constants for the addition reaction are computed using system-specific quantum RRK theory. The calculated temperature range is 298-2400 K, and the pressure range is 0.01–100 atm. The accu-rate thermodynamic and kinetics data determined in this work are indispensable in the global modeling of SOAs in atmospheric science and in the detailed understanding and prediction of ignition properties of hydrocarbons and alternative fuels.
UR - http://hdl.handle.net/10754/625904
UR - http://pubs.acs.org/doi/abs/10.1021/jacs.7b08297
UR - http://www.scopus.com/inward/record.url?scp=85033215283&partnerID=8YFLogxK
U2 - 10.1021/jacs.7b08297
DO - 10.1021/jacs.7b08297
M3 - Article
C2 - 29022349
SN - 0002-7863
VL - 139
SP - 15821
EP - 15835
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 44
ER -