TY - JOUR
T1 - Design of low cost, scalable, and high-performance TiS2 thermoelectric materials via wet ball-milling process
AU - Veluswamy, Pandiyarasan
AU - Subramanian, Saravanan
AU - ul Hassan, Muhmood
AU - Yavuz, Cafer T.
AU - Ryu, Ho Jin
AU - Cho, Byung Jin
N1 - Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2022/4
Y1 - 2022/4
N2 - Thermoelectric (TE) materials could provide an efficient means for recovering waste heat energy if a low cost, scalable, and high figure-of-merit material could be fabricated. Here, we report, for the first time, a wet ball-milling method to achieve high-performance two-dimensional (2D) semi-metallic TiS2 nanoplatelets. TiO2 is milled, annealed, and sintered with sulfur under high pressure. The addition of a small amount of sulfur (S) powder during the annealing period prevents sulfur deficiency in the sintered compact, resulting in the formation of a near-stoichiometric TiS2 composition. The formation of 2D TiS2 nanoplatelets was confirmed by X-ray diffraction, field emission scanning electron microscopy with energy-dispersive spectroscopy, and X-ray photoelectron spectroscopy. The TE properties were measured in the temperature range of 25–100 °C. Further, we obtain that the prepared TiS2 has as high figure of merit as 0.35 at 100 °C. Novel wet ball mill processing strategies for the development of high-performance 2D materials such as TiS2 make it possible to incorporate these materials for scaled-up device fabrication.
AB - Thermoelectric (TE) materials could provide an efficient means for recovering waste heat energy if a low cost, scalable, and high figure-of-merit material could be fabricated. Here, we report, for the first time, a wet ball-milling method to achieve high-performance two-dimensional (2D) semi-metallic TiS2 nanoplatelets. TiO2 is milled, annealed, and sintered with sulfur under high pressure. The addition of a small amount of sulfur (S) powder during the annealing period prevents sulfur deficiency in the sintered compact, resulting in the formation of a near-stoichiometric TiS2 composition. The formation of 2D TiS2 nanoplatelets was confirmed by X-ray diffraction, field emission scanning electron microscopy with energy-dispersive spectroscopy, and X-ray photoelectron spectroscopy. The TE properties were measured in the temperature range of 25–100 °C. Further, we obtain that the prepared TiS2 has as high figure of merit as 0.35 at 100 °C. Novel wet ball mill processing strategies for the development of high-performance 2D materials such as TiS2 make it possible to incorporate these materials for scaled-up device fabrication.
UR - http://www.scopus.com/inward/record.url?scp=85114645654&partnerID=8YFLogxK
U2 - 10.1007/s10854-021-06914-2
DO - 10.1007/s10854-021-06914-2
M3 - Article
AN - SCOPUS:85114645654
SN - 0957-4522
VL - 33
SP - 8822
EP - 8832
JO - Journal of Materials Science: Materials in Electronics
JF - Journal of Materials Science: Materials in Electronics
IS - 11
ER -