TY - GEN
T1 - Design optimization of a multi-kW thermoacoustic electric generator using deltaec model
AU - Somu, Srinath
AU - Lacoste, Deanna
AU - Saxena, Saumitra
AU - Roberts, William L.
AU - Keolian, Robert M.
N1 - KAUST Repository Item: Exported on 2021-02-04
Acknowledged KAUST grant number(s): CARF project 1975-10, BAS/1/1370-01-01, BAS/1/1396-01-01
Acknowledgements: We wish to acknowledge the work of Scott Backhaus who wrote the original version of our DeltaEC model. This study has been supported by the King Abdullah University of Science and Technology through the CARF project 1975-10, and the baseline funds BAS/1/1370-01-01 and BAS/1/1396-01-01.
PY - 2021/1/11
Y1 - 2021/1/11
N2 - Waste heat recovery from power plants and industries requires a new type of electricity generators and related technological developments. The current research work is aimed at the design of a multi-kilowatt thermoacoustic electric generator, which can be employed as the bottoming cycle of a gas-turbine power plant or for industrial waste heat recovery. The proposed device converts thermal energy into acoustic power and subsequently uses a piezoelectric alternator to convert acoustic power into electricity. The challenge in designing such a device is that it has to be acoustically balanced and the performance of the device is greatly affected by numerous parameters such as frequency of the traveling acoustic wave, heat exchanger parameters, regenerator dimensions, acoustic feedback loop, etc. The proposed device is a lab-scale demonstration targeted to produce a few kilowatts of electric power from a 20 kWth heat source. To achieve the acoustically balanced configuration of the device, DeltaEC software is used. The DeltaEC model outcomes are used to arrive at the optimized design of the device and its components. The analytical method, the optimized geometrical dimensions of thermoacoustic components and the minimum required conditions of heat source input are presented in this paper.
AB - Waste heat recovery from power plants and industries requires a new type of electricity generators and related technological developments. The current research work is aimed at the design of a multi-kilowatt thermoacoustic electric generator, which can be employed as the bottoming cycle of a gas-turbine power plant or for industrial waste heat recovery. The proposed device converts thermal energy into acoustic power and subsequently uses a piezoelectric alternator to convert acoustic power into electricity. The challenge in designing such a device is that it has to be acoustically balanced and the performance of the device is greatly affected by numerous parameters such as frequency of the traveling acoustic wave, heat exchanger parameters, regenerator dimensions, acoustic feedback loop, etc. The proposed device is a lab-scale demonstration targeted to produce a few kilowatts of electric power from a 20 kWth heat source. To achieve the acoustically balanced configuration of the device, DeltaEC software is used. The DeltaEC model outcomes are used to arrive at the optimized design of the device and its components. The analytical method, the optimized geometrical dimensions of thermoacoustic components and the minimum required conditions of heat source input are presented in this paper.
UR - http://hdl.handle.net/10754/667195
UR - https://asmedigitalcollection.asme.org/GT/proceedings/GT2020/84140/Virtual,%20Online/1094935
UR - http://www.scopus.com/inward/record.url?scp=85099785654&partnerID=8YFLogxK
U2 - 10.1115/GT2020-15419
DO - 10.1115/GT2020-15419
M3 - Conference contribution
SN - 9780791884140
BT - Volume 5: Controls, Diagnostics, and Instrumentation; Cycle Innovations; Cycle Innovations: Energy Storage
PB - American Society of Mechanical Engineers
ER -