Designing optimal experiments: an application to proton Compton scattering

J. A. Melendez, R. J. Furnstahl, H. W. Grießhammer, J. A. McGovern, D. R. Phillips, M. T. Pratola

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Interpreting measurements requires a physical theory, but the theory’s accuracy may vary across the experimental domain. To optimize experimental design, and so to ensure that the substantial resources necessary for modern experiments are focused on acquiring the most valuable data, both the theory uncertainty and the expected pattern of experimental errors must be considered. We develop a Bayesian approach to this problem, and apply it to the example of proton Compton scattering. Chiral Effective Field Theory (χEFT) predicts the functional form of the scattering amplitude for this reaction, so that the electromagnetic polarizabilities of the nucleon can be inferred from data. With increasing photon energy, both experimental rates and sensitivities to polarizabilities increase, but the accuracy of χEFT decreases. Our physics-based model of χEFT truncation errors is combined with present knowledge of the polarizabilities and reasonable assumptions about experimental capabilities at HIγS and MAMI to assess the information gain from measuring specific observables at specific kinematics, i.e. to determine the relative amount by which new data are apt to shrink uncertainties. The strongest gains would likely come from new data on the spin observables Σ 2x and Σ2x′ at ω≃ 140 to 200 MeV and 40 ∘ to 120 ∘. These would tightly constrain γE1E1- γE1M2. New data on the differential cross section between 100 and 200 MeV and over a wide angle range will substantially improve constraints on αE1- βM1, γπ and γM1M1- γM1E2. Good signals also exist around 160 MeV for Σ 3 and Σ2z′. Such data will be pivotal in the continuing quest to pin down the scalar polarizabilities and refine understanding of the spin polarizabilities.
Original languageEnglish (US)
JournalThe European Physical Journal A
Volume57
Issue number3
DOIs
StatePublished - Feb 27 2021
Externally publishedYes

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Fingerprint

Dive into the research topics of 'Designing optimal experiments: an application to proton Compton scattering'. Together they form a unique fingerprint.

Cite this