Abstract
The pyrolysis of scrap tires is a very attractive strategy to valorize chemically these end-of-life wastes. The products of this step and any additional one, such as hydrotreating, are relatively complex in nature entangling the understanding and limiting the viability. In this work, we have investigated in detail the composition of a tire pyrolysis oil blended with light cycle oil (from a refinery) and its hydrotreated products using a bifunctional NiW/HY catalyst at 320–400 °C. We have applied a set of analytical techniques to assess the composition, namely simulated distillation, ICP, GC/FID-PFPD, GC × GC/MS, and APPI FT-ICR/MS. Our results show the strength of our analytical workflow to highlight the compositional similarities of this pyrolysis oil with the standard refinery streams. The main differences arise from the higher boiling point species (originated during the pyrolysis of tires) and relatively high concentration of oxygenates. These effects can be minimized by hydrotreating the feed which effectively removes heteroatomic compounds from the feed while boosting the quantity and quality of gasoline and diesel fractions.
Original language | English (US) |
---|---|
Pages (from-to) | 36-44 |
Number of pages | 9 |
Journal | Waste Management |
Volume | 128 |
DOIs | |
State | Published - May 4 2021 |
ASJC Scopus subject areas
- Waste Management and Disposal