TY - JOUR
T1 - Determination of the bulk modulus of hydroxycancrinite, a possible zeolitic precursor in geopolymers, by high-pressure synchrotron X-ray diffraction
AU - Oh, Jae Eun
AU - Clark, Simon M.
AU - Monteiro, Paulo J. M.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUS-I1-004021
Acknowledgements: This publication was based on work supported in part by Award No. KUS-I1-004021, made by King Abdullah University of Science and Technology (KAUST). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2011/11
Y1 - 2011/11
N2 - Crystalline zeolitic materials, such as hydroxycancrinite, hydroxysodalite, herschelite and nepheline, are often synthesized from geopolymerization using fly-ash and solutions of NaOH at high temperatures. Comprised mainly of 6-membered aluminosilicate rings that act as basic building units, their crystal structures may provide insight into the reaction products formed in NaOH-activated fly ash-based geopolymers. Recent research indicates that the hydroxycancrinite and hydroxysodalite may play an important role as possible analogues of zeolitic precursor in geopolymers. Herein is reported a high pressure synchrotron study of the behavior of hydroxycancrinite exposed to pressures up to 6.1 GPa in order to obtain its bulk modulus. A refined equation of state for hydroxycancrinite yielded a bulk modulus of Ko = 46 ± 5 GPa (assuming Ko′ = 4.0) for a broad range of applied pressure. When low pressure values are excluded from the fit and only the range of 2.5 and 6.1 GPa is considered, the bulk modulus of hydroxycancrinite was found to be Ko = 46.9 ± 0.9 GPa (Ko′ = 4.0 ± 0.4, calculated). Comparison with the literature shows that all zeolitic materials possessing single 6-membered rings (i.e., hydroxycancrinite, sodalite and nepheline) have similar bulk moduli. © 2011 Elsevier Ltd. All rights reserved.
AB - Crystalline zeolitic materials, such as hydroxycancrinite, hydroxysodalite, herschelite and nepheline, are often synthesized from geopolymerization using fly-ash and solutions of NaOH at high temperatures. Comprised mainly of 6-membered aluminosilicate rings that act as basic building units, their crystal structures may provide insight into the reaction products formed in NaOH-activated fly ash-based geopolymers. Recent research indicates that the hydroxycancrinite and hydroxysodalite may play an important role as possible analogues of zeolitic precursor in geopolymers. Herein is reported a high pressure synchrotron study of the behavior of hydroxycancrinite exposed to pressures up to 6.1 GPa in order to obtain its bulk modulus. A refined equation of state for hydroxycancrinite yielded a bulk modulus of Ko = 46 ± 5 GPa (assuming Ko′ = 4.0) for a broad range of applied pressure. When low pressure values are excluded from the fit and only the range of 2.5 and 6.1 GPa is considered, the bulk modulus of hydroxycancrinite was found to be Ko = 46.9 ± 0.9 GPa (Ko′ = 4.0 ± 0.4, calculated). Comparison with the literature shows that all zeolitic materials possessing single 6-membered rings (i.e., hydroxycancrinite, sodalite and nepheline) have similar bulk moduli. © 2011 Elsevier Ltd. All rights reserved.
UR - http://hdl.handle.net/10754/597957
UR - https://linkinghub.elsevier.com/retrieve/pii/S0958946511000837
UR - http://www.scopus.com/inward/record.url?scp=80054049711&partnerID=8YFLogxK
U2 - 10.1016/j.cemconcomp.2011.05.002
DO - 10.1016/j.cemconcomp.2011.05.002
M3 - Article
SN - 0958-9465
VL - 33
SP - 1014
EP - 1019
JO - Cement and Concrete Composites
JF - Cement and Concrete Composites
IS - 10
ER -