TY - JOUR
T1 - Differentially private high dimensional sparse covariance matrix estimation
AU - Wang, Di
AU - Xu, Jinhui
N1 - KAUST Repository Item: Exported on 2021-03-25
Acknowledgements: This research was supported in part by the National Science Foundation (NSF) through grants CCF-1422324 and CCF-1716400.
PY - 2021/3/10
Y1 - 2021/3/10
N2 - In this paper, we study the problem of estimating the covariance matrix under differential privacy, where the underlying covariance matrix is assumed to be sparse and of high dimensions. We propose a new method, called DP-Thresholding, to achieve a non-trivial ℓ2-norm based error bound whose dependence on the dimension drops to logarithmic instead of polynomial, it is significantly better than the existing ones, which add noise directly to the empirical covariance matrix. We also extend the ℓ2-norm based error bound to a general ℓw-norm based one for any 1≤w≤∞, and show that they share the same upper bound asymptotically. Our approach can be easily extended to local differential privacy. Experiments on the synthetic datasets show results that are consistent with theoretical claims.
AB - In this paper, we study the problem of estimating the covariance matrix under differential privacy, where the underlying covariance matrix is assumed to be sparse and of high dimensions. We propose a new method, called DP-Thresholding, to achieve a non-trivial ℓ2-norm based error bound whose dependence on the dimension drops to logarithmic instead of polynomial, it is significantly better than the existing ones, which add noise directly to the empirical covariance matrix. We also extend the ℓ2-norm based error bound to a general ℓw-norm based one for any 1≤w≤∞, and show that they share the same upper bound asymptotically. Our approach can be easily extended to local differential privacy. Experiments on the synthetic datasets show results that are consistent with theoretical claims.
UR - http://hdl.handle.net/10754/668232
UR - https://linkinghub.elsevier.com/retrieve/pii/S0304397521001407
UR - http://www.scopus.com/inward/record.url?scp=85102628806&partnerID=8YFLogxK
U2 - 10.1016/j.tcs.2021.03.001
DO - 10.1016/j.tcs.2021.03.001
M3 - Article
SN - 0304-3975
JO - Theoretical Computer Science
JF - Theoretical Computer Science
ER -