TY - JOUR
T1 - Dip Coating Passivation of Crystalline Silicon by Lewis Acids
AU - Ji, Wenbo
AU - Zhao, Yingbo
AU - Fahad, Hossain M
AU - Bullock, James
AU - Allen, Thomas
AU - Lien, Der-Hsien
AU - De Wolf, Stefaan
AU - Javey, Ali
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): OSR-2017-GRGG-3383.01
Acknowledgements: We would like to thank Scott Bentrup of 3M Company for providing 3M PFSA powders for the passivation test. Passivation characterization and concept development were supported by the Electronic Materials Programs, funded by the Director, Office of Science, Office of Basic Energy Sciences, Material Sciences and Engineering Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Device fabrication was funded by U.S. Department of Energy, Solar Energy Technologies Office under the Contract No. DE-EE0008162, and King Abdullah University of Science & Technology under the Contract No. OSR-2017-GRGG-3383.01.
PY - 2019/3/4
Y1 - 2019/3/4
N2 - The reduction of carrier recombination processes by surface passivation is vital for highly efficient crystalline silicon (c-Si) solar cells and bulk wafer metrological characterization. Herein, we report a dip coating passivation of silicon surfaces in ambient air and temperature with Nafion, achieving a champion effective carrier lifetime of 12 ms on high resistivity n-type c-Si, which is comparable to state-of-the-art passivation methods. Nafion is a nonreactive polymer with strong Lewis acidity, thus leading to the formation of a large density of fixed charges at silicon surface, 1-2 orders of magnitude higher than what is achievable with conventional thin-film passivation layers. Notably, Nafion passivates the c-Si surface only by the fixed charges without chemical modification of dangling bonds, which is fundamentally different from the common practice of combining chemical with field-effect passivation. This dip coating process is simple and robust, without the need for complex equipment or parameter optimization as there is no chemical reaction involved.
AB - The reduction of carrier recombination processes by surface passivation is vital for highly efficient crystalline silicon (c-Si) solar cells and bulk wafer metrological characterization. Herein, we report a dip coating passivation of silicon surfaces in ambient air and temperature with Nafion, achieving a champion effective carrier lifetime of 12 ms on high resistivity n-type c-Si, which is comparable to state-of-the-art passivation methods. Nafion is a nonreactive polymer with strong Lewis acidity, thus leading to the formation of a large density of fixed charges at silicon surface, 1-2 orders of magnitude higher than what is achievable with conventional thin-film passivation layers. Notably, Nafion passivates the c-Si surface only by the fixed charges without chemical modification of dangling bonds, which is fundamentally different from the common practice of combining chemical with field-effect passivation. This dip coating process is simple and robust, without the need for complex equipment or parameter optimization as there is no chemical reaction involved.
UR - http://hdl.handle.net/10754/652940
UR - https://pubs.acs.org/doi/10.1021/acsnano.9b01038
UR - http://www.scopus.com/inward/record.url?scp=85063474010&partnerID=8YFLogxK
U2 - 10.1021/acsnano.9b01038
DO - 10.1021/acsnano.9b01038
M3 - Article
C2 - 30830749
SN - 1936-0851
VL - 13
SP - 3723
EP - 3729
JO - ACS Nano
JF - ACS Nano
IS - 3
ER -