Abstract
Individual multiwalled boron nitride nanotubes of different diameters (40-100 nm) were bent inside a 300 kV high-resolution transmission electron microscope (TEM) using a new fully integrated TEM-atomic force microscope (AFM) piezodriven holder under continuous recording of force-piezodisplacement curves. The tubes were gently compressed in situ (i.e., inside the electron microscope) between a piezomovable aluminum wire and a silicon cantilever. Typically, bending stress values ranging from ∼100 to ∼260 MPa, and corresponding to elastic moduli of 0.5-0.6 TPa, were estimated. Tube gross failures were absent up to very large bending angles (in excess of 115°). Extending the bending angles beyond 30-40° resulted in the elastic deformation of BN nanotubes, which proceeded through the propagation of consecutive momentary kinks. These had the effect of accumulating a bending curvature rather then uniformly curl the tube under the compression load. These kinks were found to be entirely reversible on reloading with no (or marginal) traces of residual plastic deformation.
Original language | English (US) |
---|---|
Pages (from-to) | 2146-2151 |
Number of pages | 6 |
Journal | Nano Letters |
Volume | 7 |
Issue number | 7 |
DOIs | |
State | Published - Jul 2007 |
Externally published | Yes |
ASJC Scopus subject areas
- Bioengineering
- General Chemistry
- General Materials Science
- Condensed Matter Physics
- Mechanical Engineering