Directional Spectra-based Clustering for Visualizing Patterns of Ocean Waves and Winds

Carolina de Jesus Euan Campos, Ying Sun

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


The energy distribution of wind-driven ocean waves is of great interest in marine science. Discovering the generating process of ocean waves is often challenging and the direction is the key for a better understanding. Typically, wave records are transformed into a directional spectrum which provides information about the wave energy distribution across different frequencies and directions. Here, we propose a new time series clustering method for a series of directional spectra in order to extract the spectral features of ocean waves and develop informative visualization tools to summarize identified wave clusters. We treat directional distributions as functional data of directions, and construct a directional functional boxplot to display the main directional distribution of the wave energy within a cluster. We also trace back when these spectra were observed, and we present color-coded clusters on a calendar plot to show their temporal variability. For each identified wave cluster, we analyze wind speed and wind direction hourly to investigate the link between wind data and wave directional spectra. The performance of the proposed clustering method is evaluated by simulations and illustrated by a real-world dataset from the red sea.
Original languageEnglish (US)
Pages (from-to)659-670
Number of pages12
JournalJournal of Computational and Graphical Statistics
Issue number3
StatePublished - Feb 15 2019


Dive into the research topics of 'Directional Spectra-based Clustering for Visualizing Patterns of Ocean Waves and Winds'. Together they form a unique fingerprint.

Cite this