Discovery of path nearby clusters in spatial networks

Shuo Shang, Kai Zheng, Christian S. Jensen, Bin Yang, Panos Kalnis, Guohe Li, Ji Rong Wen

Research output: Contribution to journalArticlepeer-review

67 Scopus citations


The discovery of regions of interest in large cities is an important challenge. We propose and investigate a novel query called the path nearby cluster (PNC) query that finds regions of potential interest (e.g., sightseeing places and commercial districts) with respect to a user-specified travel route. Given a set of spatial objects O (e.g., POIs, geo-tagged photos, or geo-tagged tweets) and a query route q , if a cluster c has high spatial-object density and is spatially close to q , it is returned by the query (a cluster is a circular region defined by a center and a radius). This query aims to bring important benefits to users in popular applications such as trip planning and location recommendation. Efficient computation of the PNC query faces two challenges: how to prune the search space during query processing, and how to identify clusters with high density effectively. To address these challenges, a novel collective search algorithm is developed. Conceptually, the search process is conducted in the spatial and density domains concurrently. In the spatial domain, network expansion is adopted, and a set of vertices are selected from the query route as expansion centers. In the density domain, clusters are sorted according to their density distributions and they are scanned from the maximum to the minimum. A pair of upper and lower bounds are defined to prune the search space in the two domains globally. The performance of the PNC query is studied in extensive experiments based on real and synthetic spatial data. © 2014 IEEE.
Original languageEnglish (US)
Pages (from-to)1505-1518
Number of pages14
JournalIEEE Transactions on Knowledge and Data Engineering
Issue number6
StatePublished - Jun 1 2015

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Information Systems
  • Computer Science Applications


Dive into the research topics of 'Discovery of path nearby clusters in spatial networks'. Together they form a unique fingerprint.

Cite this