Discrete geodesic parallel coordinates

Hui Wang, DAVIDE PELLIS, Florian Rist, Helmut Pottmann, Christian Müller

Research output: Contribution to journalArticlepeer-review

34 Scopus citations

Abstract

Geodesic parallel coordinates are orthogonal nets on surfaces where one of the two families of parameter lines are geodesic curves. We describe a discrete version of these special surface parameterizations and show that they are very useful for specific applications, most of which are related to the design and fabrication of surfaces in architecture. With the new discrete surface model, it is easy to control strip widths between neighboring geodesics. This facilitates tasks such as cladding a surface with strips of originally straight flat material or designing geodesic gridshells and timber rib shells. It is also possible to model nearly developable surfaces. These are characterized by geodesic strips with almost constant strip widths and are used for generating shapes that can be manufactured from materials which allow for some stretching or shrinking like felt, leather, or thin wooden boards. Most importantly, we show how to constrain the strip width parameters to model a class of intrinsically symmetric surfaces. These surfaces are isometric to surfaces of revolution and can be covered with doubly-curved panels that are produced with only a few molds when working with flexible materials like metal sheets.
Original languageEnglish (US)
Pages (from-to)1-13
Number of pages13
JournalACM Transactions on Graphics
Volume38
Issue number6
DOIs
StatePublished - Nov 8 2019

Fingerprint

Dive into the research topics of 'Discrete geodesic parallel coordinates'. Together they form a unique fingerprint.

Cite this