Abstract
Molecular doping is a promising strategy to fine-tune the electronic properties of halide perovskites and accelerate their implementation in next-generation optoelectronics. However, a deeper understanding of the role of host-dopant interactions in these systems is needed to fully exploit the potential of this avenue. Herein, we demonstrate a surface post-treatment strategy employing n-type molecular dopant n-DMBI-H to modulate free hole density in p-type CH3NH3Sn0.75Pb0.25I3 films. We show that the adsorption of n-DMBI-H on surface Sn atoms, followed by the dissociation of an electron-donating hydride from the dopant, facilitates charge transfer to the perovskite and hole trapping at the dissociated hydride. We identify this mechanism as a key factor dictating doping compensation in perovskites, allowing carrier density control within nearly 1 order of magnitude via the dissociated molecular dopant located at film surfaces and grain boundaries. We then exploit n-DMBI-H in perovskite/transport layer junctions, achieving reduced carrier losses and improved contact selectivity and performance in p-i-n, Sn-rich perovskite solar cells. We expect this work to provide carrier density tuning guidelines for a broad range of tin-based perovskite applications.
Original language | English (US) |
---|---|
Pages (from-to) | 2858-2867 |
Number of pages | 10 |
Journal | ACS Energy Letters |
Volume | 8 |
Issue number | 7 |
DOIs | |
State | Published - Jul 14 2023 |
ASJC Scopus subject areas
- Chemistry (miscellaneous)
- Renewable Energy, Sustainability and the Environment
- Fuel Technology
- Energy Engineering and Power Technology
- Materials Chemistry