Distributed Channel Estimation and Pilot Contamination Analysis for Massive MIMO-OFDM Systems

Alam Zaib, Mudassir Masood, Anum Ali, Weiyu Xu, Tareq Y. Al-Naffouri

Research output: Contribution to journalArticlepeer-review

40 Scopus citations

Abstract

By virtue of large antenna arrays, massive MIMO systems have a potential to yield higher spectral and energy efficiency in comparison with the conventional MIMO systems. This paper addresses uplink channel estimation in massive MIMO-OFDM systems with frequency selective channels. We propose an efficient distributed minimum mean square error (MMSE) algorithm that can achieve near optimal channel estimates at low complexity by exploiting the strong spatial correlation among antenna array elements. The proposed method involves solving a reduced dimensional MMSE problem at each antenna followed by a repetitive sharing of information through collaboration among neighboring array elements. To further enhance the channel estimates and/or reduce the number of reserved pilot tones, we propose a data-aided estimation technique that relies on finding a set of most reliable data carriers. Furthermore, we use stochastic geometry to quantify the pilot contamination, and in turn use this information to analyze the effect of pilot contamination on channel MSE. The simulation results validate our analysis and show near optimal performance of the proposed estimation algorithms.
Original languageEnglish (US)
Pages (from-to)4607-4621
Number of pages15
JournalIEEE Transactions on Communications
Volume64
Issue number11
DOIs
StatePublished - Jul 22 2016

Fingerprint

Dive into the research topics of 'Distributed Channel Estimation and Pilot Contamination Analysis for Massive MIMO-OFDM Systems'. Together they form a unique fingerprint.

Cite this